Бернулли числа - определение. Что такое Бернулли числа
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Бернулли числа - определение

Число Бернулли; Бернулли числа; Бернуллиевы числа
  • дзета-функции Римана]]
  • Написана в 1713 году
Найдено результатов: 231
Бернулли числа         

специальная последовательность рациональных чисел, фигурирующая в различных вопросах математического анализа и теории чисел. Значения первых шести Б. ч.:

B1 = 1/6, B2 = 1/30, B3 = 1/42, B4 = 1/30,

B5 = 5/66, B6 = 691/2730.

В математическом анализе Б. ч. появляются как коэффициенты разложения некоторых элементарных функций в степенные ряды. Например:

К числу важнейших формул, в которых встречаются Б. ч., относится формула суммирования Эйлера - Маклорена (см. Конечных разностей исчисление). Через Б. ч. выражаются суммы многих рядов и значения несобственных интегралов. Б. ч. впервые появились в посмертной работе Я. Бернулли (1713) в связи с вычислением суммы одинаковых степеней натуральных чисел. Он доказал, что

Для Б. ч. известны рекуррентные формулы, позволяющие последовательно вычислять эти числа, а также явные формулы (имеющие довольно сложный вид).

Большой интерес представляют теоретико-числовые свойства Б. ч. Немецкий математик Э. Куммер в 1850 установил, что уравнение Ферма xp + ур = zp не решается в целых числах х, у, z, отличных от нуля, если простое число р > 2 не делит числителей Б. ч. B1, B2,...B (p - 3)/2. Нередко для обозначения Б. ч. вместо Bm пишут (-1) m - 1B2m (m = 1, 2...); кроме того, полагают

B0 = 1, B1 = - 1/2,

B3 = B5 = B7 =... = 0.

Лит.: Чистяков И. И., Бернуллиевые числа, М., 1895; Кудрявцев В. А., Суммирование степеней чисел натурального ряда и числа Бернулли, М.-Л., 1936; Уиттекер Э.-Т. и Ватсон Д.-Н., Курс современного анализа, пер. с англ., 2 изд., ч. 1, М., 1963; Landau Е., Vorlesungen über Zahlentheorie, Bd 3, N. Y., 1927.

С. Б. Стечкин.

Числа Бернулли         
Чи́сла Берну́лли — последовательность рациональных чисел B_0, B_1, B_2, \dots, впервые рассмотренная Якобом Бернулли в связи с вычислением суммы последовательных натуральных чисел, возведённых в одну и ту же степень:
Бернулли, Якоб         
  • right
  • right
ШВЕЙЦАРСКИЙ МАТЕМАТИК (1655—1705)
Якоб Бернулли; Бернулли Я.; Бернулли Якоб; Бернулли, Яков; Яков Бернулли
Я́коб Берну́лли (, 6 января 1655, Базель, — 16 августа 1705, Базель) — швейцарский . Один из основателей теории вероятностей и математического анализа. Старший брат Иоганна Бернулли, совместно с ним положил начало вариационному исчислению. Доказал частный случай закона больших чисел — теорему Бернулли. Профессор математики Базельского университета (с 1687 года). Иностранный член Парижской академии наук (1699) и Берлинской академии наук (1702).
Закон Бернулли         
  • Иллюстрация формулы Торричелли
  • Закон Бернулли объясняет [[эффект Вентури]]: в узкой части трубы скорость течения жидкости выше, а давление меньше, чем в широкой части
ФИЗИЧЕСКИЙ ЗАКОН, СВЯЗЫВАЮЩИЙ ДАВЛЕНИЕ И СКОРОСТЬ В ТЕКУЩЕЙ ЖИДКОСТИ
Эффект Бернулли; Принцип Бернулли; Интеграл Бернулли; Уравнение Бернулли (гидроаэромеханика); Формула Сен-Венана — Ванцеля
Зако́н Берну́лли (также уравне́ние Берну́лли, теоре́ма Берну́лли или интегра́л Берну́лли) устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости повышается, то скорость течения убывает, и наоборот.
Бернулли, Даниил         
  • Портрет Даниила Бернулли. Иоганн Николаус Гроот, 1790 год
  • Титульный лист «Гидродинамики»
ШВЕЙЦАРСКИЙ ФИЗИК, МЕХАНИК И МАТЕМАТИК, ОДИН ИЗ СОЗДАТЕЛЕЙ КИНЕТИЧЕСКОЙ ТЕОРИИ ГАЗОВ, ГИДРОДИНАМИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ
Даниил Бернулли; Бернулли Д.; Бернулли Даниил; Д. Бернулли
Дании́л Берну́лли (Daniel Bernoulli; 29 января (8 февраля) 1700 — 17 марта 1782) — швейцарский , и , один из создателей кинетической теории газов, гидродинамики и математической физики. Сын Иоганна Бернулли.
БЕРНУЛЛИ УРАВНЕНИЕ         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Бернулли уравнение
связывает скорость и давление в потоке идеальной несжимаемой жидкости при установившемся течении. Бернулли уравнение выражает закон сохранения энергии движущейся жидкости. Широко применяется в гидравлике и технической гидродинамике. Выведено Д. Бернулли в 1738.
Схема Бернулли         
Проводятся n опытов, в каждом из которых может произойти определенное событие («успех») с вероятностью p (или не произойти — «неудача» — с вероятностью q=1-p). Задача — найти вероятность получения ровно m успехов в этих n опытах.
Бернулли уравнение         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Бернулли уравнение
I Берну́лли уравне́ние

дифференциальное уравнение 1-го порядка вида:

dy/dx + Py = Qyα,

где Р, Q - заданные непрерывные функции от x; α - постоянное число. Введением новой функции z = y--α+1 Б. у. сводится к линейному дифференциальному уравнению (См. Линейные дифференциальные уравнения) относительно z. Б. у. было рассмотрено Я. Бернулли в 1695, метод решения опубликован И. Бернулли в 1697.

II Берну́лли уравне́ние

основное уравнение гидродинамики (См. Гидродинамика), связывающее (для установившегося течения) скорость текущей жидкости v, давление в ней р и высоту h расположения малого объёма жидкости над плоскостью отсчёта. Б. у. было выведено Д. Бернулли в 1738 для струйки идеальной несжимаемой жидкости постоянной плотности ρ, находящейся под действием только сил тяжести. В этом случае Б. у. имеет вид:

v2/2 + plρ + gh = const,

где g - ускорение силы тяжести. Если это уравнение умножить на ρ, то 1-й член будет представлять собой кинетическую энергию единицы объёма жидкости, а др. 2 члена - его потенциальную энергию, часть которой обусловлена силой тяжести (последний член уравнения), а др. часть - давлением p. Б. у. в такой форме выражает закон сохранения энергии. Если вдоль струйки жидкости энергия одного вида, например кинетическая, увеличивается, то потенциальная энергия на столько же уменьшается. Поэтому, например, при сужении потока, текущего по трубопроводу, когда скорость потока увеличивается (т.к. через меньшее сечение за то же время проходит такое же количество жидкости, как и через большее сечение), давление соответственно в нём уменьшается (на этом основан принцип работы расходомера Вентури).

Из Б. у. вытекает ряд важных следствий. Например, при истечении жидкости из открытого сосуда под действием силы тяжести (рис. 1) из Б. у. следует:

v2/2g = h или

т. е. скорость жидкости в выходном отверстии такова же, как при свободном падении частиц жидкости с высоты h.

Если равномерный поток жидкости, скорость которого v0 и давление p0, встречает на своём пути препятствие (рис. 2), то непосредственно перед препятствием происходит подпор - замедление потока; в центре области подпора, в критической точке, скорость потока равна нулю. Из Б. у. следует, что давление в критической точке p1 = p0 + ρv20/2. Приращение давления в этой точке, равное p1 - p0 = ρv20/2, называется динамическим давлением, или скоростным напором. В струйке реальной жидкости её механическая энергия не сохраняется вдоль потока, а расходуется на работу сил трения и рассеивается в виде тепловой энергии, поэтому при применении Б. у. к реальной жидкости необходимо учитывать потери на сопротивление.

Б. у. имеет большое значение в гидравлике (См. Гидравлика) и технической гидродинамике: оно используется при расчётах трубопроводов, насосов, при решении вопросов, связанных с фильтрацией, и т.д. Бернулли уравнение для среды с переменной плотностью р вместе с уравнением неизменяемости массы и уравнением состояния является основой газовой динамики (См. Газовая динамика).

Лит.: Фабрикант Н.Я., Аэродинамика, ч. 1-2, Л.,1949- 64; Угинчус А. А., Гидравлика, гидравлические машины и основы сельскохозяйственного водоснабжения, К.-М., 1957, гл. V.

Рис. 1. Истечение из открытого сосуда.

Рис. 2. Обтекание препятствия.

Многочлены Бернулли         
Многочлены Бернулли — последовательность многочленов, возникающая при изучении многих специальных функций, в частности ζ-функции Римана и ζ-функции Гурвица; частный случай последовательности Аппеля. В отличие от ортогональных многочленов, многочлены Бернулли примечательны тем, что число корней в интервале \ [0,1] не увеличивается с увеличением степени многочлена.
Гиперболические числа         
Гиперболические числа, или двойны́е чи́сла, паракомпле́ксные чи́сла, расщепля́емые компле́ксные чи́сла, компле́ксные чи́сла гиперболи́ческого ти́па, контркомпле́ксные чи́слаС. А.

Википедия

Числа Бернулли

Чи́сла Берну́лли — последовательность рациональных чисел B 0 , B 1 , B 2 , {\displaystyle B_{0},B_{1},B_{2},\dots } , впервые рассмотренная Якобом Бернулли в связи с вычислением суммы последовательных натуральных чисел, возведённых в одну и ту же степень:

n = 0 N 1 n k = 1 k + 1 s = 0 k ( k + 1 s ) B s N k + 1 s , {\displaystyle \sum _{n=0}^{N-1}n^{k}={\frac {1}{k+1}}\sum _{s=0}^{k}{\binom {k+1}{s}}B_{s}N^{k+1-s},}

где ( k + 1 s ) = ( k + 1 ) ! s ! ( k + 1 s ) ! {\displaystyle {\tbinom {k+1}{s}}={\tfrac {(k+1)!}{s!\cdot (k+1-s)!}}}  — биномиальный коэффициент.

Некоторые авторы указывают другие определения, однако в большинстве современных учебников даётся такое же определение, как и здесь. При этом B 1 = 1 2 {\displaystyle B_{1}=-{\tfrac {1}{2}}} . Часть авторов (например, трёхтомник Фихтенгольца) использует определение, которое отличается от этого только знаком B k {\displaystyle B_{k}} . Кроме того, так как за исключением B 1 {\displaystyle B_{1}} все числа Бернулли с нечётным номером равны 0, некоторые авторы используют обозначение « B n {\displaystyle B_{n}} » для B 2 n {\displaystyle B_{2n}} или | B 2 n | {\displaystyle |B_{2n}|} .