Голономные системы - определение. Что такое Голономные системы
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Голономные системы - определение

Голономные системы
  • [[Математический маятник]]
Найдено результатов: 428
ГОЛОНОМНАЯ СИСТЕМА         
механическая система, в которой все связи (см. Связи механические) являются голономными, т. е. геометрическими или сводящимися к геометрическим и налагающими ограничения только на положения (перемещения) точек и тел системы, но не на их скорости, как это имеет место в неголономных системах.
Голономные системы         

механические системы, в которых все связи (см. Связи механические) являются геометрическими (голономными), то есть налагающими ограничения только на положения (или перемещения за время движения) точек и тел системы, но не на величины их скоростей. Например, двойной маятник (рис. а) является Г. с.; в нём связи (нити) налагают ограничения только на положения или перемещения грузов M1 и M2, но не на их скорости, которые при движении могут иметь любые значения. Связь, налагающая ограничения на скорости точек и тел системы, то есть устанавливающая между этими скоростями определённые соотношения, называется кинематической. Однако если эти соотношения можно свести к геометрическим, то есть к соотношениям между перемещениями (или координатами) точек и тел системы, то такая связь также является голономной. Например, при качении без скольжения колеса радиуса R по прямолинейному рельсу (рис. б) скорость υ центра колеса и угловая скорость ω колеса связаны соотношением υ=Rω, но его можно свести к геометрическому соотношению s = Rφ между перемещением s = AA1 центра и углом поворота φ колеса. Следовательно, это Г. с.

Кинематические связи, не сводящиеся к геометрическим, называются неголономными, а механические системы с такими связями - неголономными системами (См. Неголономные системы). Разделение механических систем на голономные и неголономные очень существенно, так как ряд уравнений, позволяющих сравнительно просто решать задачи механики (например, Лагранжа уравнения механики), применим только к Г. С.

С. М. Тарг.

Рис. к ст. Голономные системы.

Голономная система         
Голономная система — механическая система, механические связи которой можно свести к геометрическим (то есть, к голономным).
Системы полива         
  • Системы полива на полях
Систе́мы поли́ва — различного вида инженерно-технические комплексы, обеспечивающие орошение определенной территории.
Буферные системы крови         
Бу́ферные систе́мы кро́ви (от , buff — «смягчать удар») — физиологические системы и механизмы, обеспечивающие заданные параметры кислотно-основного равновесия в кровиБерезов Т. Т.
Буферные системы         

буферные растворы, буферные смеси, системы, поддерживающие определённую концентрацию ионов водорода Н+, то есть определённую кислотность среды. Кислотность буферных растворов почти не изменяется при их разбавлении или при добавлении к ним некоторых количеств кислот или оснований.

Примером Б. с. служит смесь растворов уксусной кислоты CH3COOH и её натриевой соли CH3COONa. Эта соль как сильный электролит (См. Электролиты) диссоциирует практически нацело, т. е. даёт много ионов CH3COO-. При добавлении к Б. с. сильной кислоты, дающей много ионов Н+, эти ионы связываются ионами CH3COO- и образуют слабую (то есть мало диссоциирующую) уксусную кислоту:

Наоборот, при подщелачивании Б. с., то есть при добавлении сильного основания (например, NaOH), ионы OH- связываются Н+-ионами, имеющимися в Б. с. благодаря диссоциации уксусной кислоты; при этом образуется очень слабый электролит - вода:

По мере расходования Н+-ионов на связывание ионов OH- диссоциируют всё новые и новые молекулы CH3COOH, так что равновесие (1) смещается влево. В результате, как в случае добавления Н+-ионов, так и в случае добавления ОН--ионов, эти ионы связываются и потому кислотность раствора практически не меняется.

Кислотность растворов принято выражать так называемым водородным показателем (См. Водородный показатель) pH (для нейтральных растворов pH=7, для кислых - pH меньше, а для щелочных - больше 7). Приливание к 1 л чистой воды 100 мл 0,01 молярного раствора HCl (0,01 М) изменяет pH от 7 до 3. Приливание того же раствора к 1 л Б. с. CH3COOH + CH3COONa (0,1 М) изменит pH от 4,7 до 4,65, то есть всего на 0,05. В присутствии 100 мл 0,01 М раствора NaOH в чистой воде pH изменится от 7 до 11, а в указанной Б. с. лишь от 4,7 до 4,8. Кроме рассмотренного, имеются многочисленные другие Б. с. (примеры см. в табл.). Кислотность (и, следовательно, pH) Б. с. зависит от природы компонентов, их концентрации, а для некоторых Б. с. и от температуры. Для каждой Б. с. pH остаётся примерно постоянным лишь до определённого предела, зависящего от концентрации компонентов.

Примеры буферных систем

------------------------------------------------------------------------------------------

| Компоненты | pH |

| (концентрации по 0,1 г мол/л) | (при |

| | 15-250C) |

|----------------------------------------------------------------------------------------|

| Уксусная кислота + ацетат натрия, CH3 | 4,7 |

| COOH + CH3COONa | |

|----------------------------------------------------------------------------------------|

| Лимоннокислый натрий | 5,0 |

| (двузамещеный), C6H6O7Na2 | |

|----------------------------------------------------------------------------------------|

| Борная кислота + бура, | 8,5 |

| Н3ВО3 + Na2B4O7 10H2O | |

|----------------------------------------------------------------------------------------|

| Борная кислота + едкий натр, | 9,2 |

| Н3ВО3 + NaOH. | |

|----------------------------------------------------------------------------------------|

| Фосфат натрия (двузамещеный)+ | 11,5 |

| + едкий натр, Na2HPO4 + NaOH | |

------------------------------------------------------------------------------------------

Б. с. широко используются в аналитической практике и в химическом производстве, так как многие химические реакции идут в нужном направлении и с достаточной скоростью лишь в узких пределах pH. Б. с. имеют важнейшее значение для жизнедеятельности организмов; они определяют постоянство кислотности различных биологических жидкостей (крови, лимфы, межклеточных жидкостей). Основные Б. с. организма животных и человека: бикарбонатная (угольная кислота и её соли), фосфатная (фосфорная кислота и её соли), белки (их буферные свойства определяются наличием основных и кислотных групп). Белки крови (прежде всего гемоглобин, обусловливающий около 75\% буферной способности крови) обеспечивают относительную устойчивость pH крови. У человека pH крови равен 7,35-7,47 и сохраняется в этих пределах даже при значительных изменениях питания и др. условий. Чтобы сдвинуть pH крови в щелочную сторону, необходимо добавить к ней в 40-70 раз больше щёлочи, чем к равному объёму чистой воды. Естественные Б. с. в почве играют большую роль в сохранении плодородия полей.

В. Л. Василевский.

Мезоамериканские системы письма         
  • Стела 5 из [[Такалик-Абах]]а
  • 62 знака на Каскахальском блоке
  • Попытка дешифровки Кауфмана и Джастесона, опровергнутая более поздними исследованиями.
  • англ.]]) — надпись в три столбца, датировка около II в. н. э.
  • Монумент 3 в Сан-Хосе-Моготе. Два затёртых знака между ногами вождя предположительно означают его имя, Землетрясение 1
  • Паленке]], Мексика
Мезоамериканские системы письма — возникшие независимо от других центров возникновения письменности системы письма индейских культур центральной Америки. Расшифрованные до настоящего момента письменности Мезоамерики сочетали в себе особенности логографии и слоговых письменностей, и по этой причине (а также из-за рисуночного внешнего вида знаков) нередко именуются «иероглифами».
Медаль «Ветеран уголовно-исполнительной системы»         
Меда́ль «Ветера́н уголо́вно-исполни́тельной систе́мы» — ведомственная медаль Министерства юстиции Российской Федерации, учреждённая приказом Министерства юстиции Российской Федерации № 80 от 7 марта 2000 года. Упразднена Приказом Минюста РФ от 16 октября 2007 г.
Экспертная система         
Экспе́ртная систе́ма (ЭС, ) — компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные экспертные системы начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х годах получили коммерческое подкрепление.
Малые тела Солнечной системы         
ТЕРМИН ВВЕДЕН МЕЖДУНАРОДНЫМ АСТРОНОМИЧЕСКИМ СОЮЗОМ В 2006 ГОДУ ДЛЯ ОБОЗНАЧЕНИЯ ОБЪЕКТОВ СОЛНЕЧНОЙ СИСТЕМЫ, КОТОРЫЕ НЕ ЯВЛЯЮТСЯ НИ ПЛАНЕТАМ
Малое тело Солнечной системы; Малые тела
Малое тело Солнечной системы — термин, введённый Международным астрономическим союзом в 2006 году для обозначения объектов Солнечной системы, которые не являются ни планетами, ни карликовыми планетами, ни их спутниками:

Википедия

Голономная система

Голономная система — механическая система, механические связи которой можно свести к геометрическим (то есть, к голономным). Такие связи сводятся к ограничениям только на положения тел системы. Уравнения связи f j {\displaystyle f_{j}} записывают в виде

f j ( x i , y i , z i , t ) = 0 , {\displaystyle f_{j}(x_{i},y_{i},z_{i},t)=0,}

где x i , y i , z i {\displaystyle x_{i},y_{i},z_{i}}  — координаты, t {\displaystyle t}  — время, j {\displaystyle j}  — число связей.

Если все кинематические связи системы невозможно свести к геометрическим связям или их уравнения связи не могут быть проинтегрированы, то данная система будет неголономной.

Решение задач механики для голономных систем как правило проще, поскольку при этом можно воспользоваться многими разработанными методами и теоремами, например, уравнением Лагранжа, уравнением Гамильтона, уравнением Гамильтона-Якоби и др.

Что такое ГОЛОНОМНАЯ СИСТЕМА - определение