Гутенберга слой - определение. Что такое Гутенберга слой
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Гутенберга слой - определение

СЛОЙ В ВЕРХНЕЙ МАНТИИ ПЛАНЕТЫ
Слой Гутенберга
  • Механизм субдукции
Найдено результатов: 96
Гутенберга слой      

сейсмический волновод, слой пониженных скоростей сейсмических волн (См. Сейсмические волны) в верхней мантии Земли. Назван по имени Б. Гутенберга, обнаружившего существование этого слоя. Верхняя граница Г. с. находится под материками на глубине 80-100 км, под океанами - около 50 км. Нижняя граница, по-видимому, проходит на глубине около 400 км. В некоторых местах Г. с. отсутствует или понижены скорости только поперечных сейсмических волн. Предполагается, что причиной замедленного прохождения сейсмических волн является большой геотермический градиент, или температура, близкая к точке плавления; это даёт основание отождествлять Г. с. с астеносферой (См. Астеносфера).

Кипящий слой         
  • псевдоожижения]].<!-- : Distributor — распределитель потока газа; Gas bubble — пузырьки газа; Solid paticle — твёрдые частицы; Solid — твёрдая фаза -->
Псевдоожиженный слой
Кипя́щий слой создаётся в тех случаях, когда некоторое количество твёрдых частиц находится под воздействием восходящего потока газа (обычно воздуха) или смеси из газа и жидкости, благодаря чему твёрдые частицы находятся в парящем состоянии. Такая гетерофазная система ведёт себя подобно жидкости.
КИПЯЩИЙ СЛОЙ         
  • псевдоожижения]].<!-- : Distributor — распределитель потока газа; Gas bubble — пузырьки газа; Solid paticle — твёрдые частицы; Solid — твёрдая фаза -->
Псевдоожиженный слой
см. Псевдоожижение.
Перемешанный слой         
Квазиоднородный слой
Перемешанный слой (Квазиоднородный слой) в океанологии и лимнологии — это слой, в котором активная турбулентность гомогенизировала параметры среды (чаще всего рассматриваются температура и солёность) на определённом интервале глубин. Поверхностный перемешанный слой — это слой, где данная турбулентность вызывается ветрами, охлаждением или такими процессами, как испарение или формирование льда, которое приводит к увеличению солёности и, следовательно, к увеличению конвекции, которая и перемешивает нижележащие слои.
Кипящий слой         
  • псевдоожижения]].<!-- : Distributor — распределитель потока газа; Gas bubble — пузырьки газа; Solid paticle — твёрдые частицы; Solid — твёрдая фаза -->
Псевдоожиженный слой

псевдоожиженный слой, состояние слоя зернистого сыпучего материала, при котором под влиянием проходящего через него потока газа или жидкости (сжижающих агентов) частицы твёрдого материала интенсивно перемещаются одна относительно другой. В этом состоянии слой напоминает кипящую жидкость, приобретая некоторые её свойства, и его поведение подчиняется законам гидростатики. В К. с. достигается тесный контакт между зернистым материалом и сжижающим агентом, что делает эффективным применение К. с. в аппаратах химической промышленности, где необходимо взаимодействие твёрдой и текучей фаз (диффузионные, каталитические процессы и др.).

Переход неподвижного слоя в кипящий происходит при такой скорости ожижающего агента, когда гидродинамическое давление потока Р уравновешивает силу тяжести G, действующую на частицы. При дальнейшем увеличении скорости слой вначале расширяется при неизменном гидравлическом сопротивлении, а при достижении условия P>G частицы начинают выноситься из слоя. На приведена диаграмма, характеризующая зависимость перепада давления в слое ΔР от скорости движения сжижающего агента ω0. Пока слой неподвижен, Р возрастает при увеличении ω0 (участок АВ). После точки В, соответствующей переходу слоя в кипящее состояние, сопротивление слоя не изменяется при росте скорости (участок ВС). После точки С, соответствующей началу уноса частиц твердого материала, сопротивление слоя падает. Скорости ожижающего агента, соответствующие точкам В и С, называются скоростью псевдоожижения (ω'0) и скоростью уноса (ω"0). Отношение W= ω''0/ ω'0 называется числом псевдоожижения. Оно характеризует интенсивность перемешивания частиц в К. с. Наиболее интенсивному перемешиванию соответствует W=2, при дальнейшем росте W слой становится неоднородным: происходит прорыв крупных пузырей газа через него и начинается интенсивное выбрасывание частиц в пространство над его поверхностью. Возможно также образование газовых пробок. К. с. характеризуется постоянством температуры по высоте и сечению, даже если в нём протекают процессы с большим тепловым эффектом, а также высокими значениями коэффициента теплопередачи к поверхностям теплообмена.

Аппараты с К. с. широко применяются в промышленности благодаря простоте устройства, интенсивности действия, лёгкости благодаря простоте устройства, интенсивности действия, легкости автоматизации, относительно небольшому гидравлическому сопротивлению слоя (независимо от скорости ожижающего агента. Помимо осуществления химических процессов, их используют для адсорбции веществ из газов и жидкостей, теплообмена, сушки твердого материала, а также для его перемешивания, классификации и транспортировки. Примером, наглядно демонстрирующим работу аппарата с К. с., является действие установки для сушки в К. с. (). Воздух поступает через фильтр 1 и калорифер 2 в сушильную камеру 3, где создаётся К. с. материала, подаваемого шнеком 4. После обеспыливания в циклоне 5 и очистки в фильтре 6 воздух выбрасывается в атмосферу вентилятором 7. Высушенный материал переливается через порог 8 и удаляется из аппарата. Другим примером аппаратов такого типа является Кипящего слоя печь.

К недостаткам аппаратов с К. с. относятся истирание частиц твёрдого материала, унос их потоком сжижающего агента, эрозия аппаратуры, ограниченный диапазон скоростей сжижающего агента.

Лит.: Гельперин Н. И., Айнштейн В. Г., Кваша В. Б., Основы техники псевдоожижения, М., 1967; Забродский С. С., Гидродинамика и теплообмен в псевдоожиженном (кипящем) слое, М. - Л., 1963; Лева М., Псевдоожижение, пер. с англ., М., 1961.

В. Л. Пебалк.

Рис. 1 к ст. Кипящий слой.

Рис. 2 к ст. Кипящий слой.

Астеносфера         
(от греч. asthenes - слабый и Сфера

слой пониженной твёрдости, прочности и вязкости в верхней мантии Земли (См. Мантия Земли). Отождествляется с Гутенберга слоем (См. Гутенберга слой). Расположен на глубинах около 100 км под континентами и около 50 км под дном океана; нижняя граница его находится на глубинах 250-350 км. Не исключена прерывистость слоя. Сейсмическими исследованиями установлено, что в пределах А. скорость распространения поперечных и, возможно, продольных сейсмических волн (См. Сейсмические волны) несколько ниже, чем в покрывающих и подстилающих слоях верхней мантии. Вязкость вещества А. 10 19 - 1023пз, ниже и выше границ А. она не менее 1023 пз. Предполагается, что в пределах А., в связи с низким пределом текучести, происходит медленное перетекание масс в горизонтальном направлении под влиянием неравномерной нагрузки со стороны земной коры.

Наличие А. объясняется высоким геотермическим градиентом (См. Геотермический градиент), высокой температурой вещества А., близкой к температуре плавления, и процессами релаксации (См. Релаксация). В пределах А. лежат обычно очаги питания вулканов и осуществляется перемещение подкоровых масс, сопровождающих основные тектонические процессы. Термин "А." введён в 1914 американским геологом Дж. Барреллом.

В. А. Магницкий.

Астеносфера         
Астеносфе́ра (от «бессильный» и «шар») — слой в верхней мантии планеты (в частности, Земли). Более пластична, чем соседние слои.
астеносфера         
ж.
Предполагаемый слой пониженной вязкости в верхней мантии Земли (в геологии).
Мономолекулярный слой         
Моноатомный слой; Мономолекулярный слой; Monolayer; Моноклеточный слой

монослой, слой вещества толщиной в одну молекулу на поверхности раздела фаз (тел). М. с. возникают при адсорбции, поверхностной диффузии и в результате испарения растворителя из раствора, содержащего нелетучий компонент. М. с., образованные поверхностно-активными веществами (См. Поверхностно-активные вещества) на поверхности жидкости или на границе двух несмешивающихся жидкостей, могут находиться в различных двумерных состояниях: газообразном, конденсированном и промежуточном ("жидко-расширенном"). В газообразных М. с. расстояние между молекулами велико по сравнению с их размерами, поэтому межмолекулярное (когезионное) взаимодействие практически отсутствует. Конденсированные М. с., напротив, имеют предельно плотную упаковку молекул. В случае жирных кислот, спиртов или др. соединений, молекулы которых можно представить в виде углеводородной цепи с полярной группой на конце, конденсированные М. с. подобны "частоколу", занимающему всю площадь поверхности. Каждая молекула в таком "частоколе" расположена перпендикулярно или наклонно к поверхности раздела фаз и независимо от своей длины обычно занимает площадку 20-25 Å2. Высокомолекулярные соединения линейного строения, как правило, образуют М. с. с горизонтальной ориентацией макромолекул. При достаточно высокой когезии (См. Когезия) М. с. могут проявлять поверхностную вязкость и прочность, сильно отличающиеся от этих же характеристик объёмных фаз.

Структура и свойства М. с. оказывают большое влияние на процессы массопереноса (испарение, диффузию) и катализа, трение, адгезию (См. Адгезия), коррозию (См. Коррозия), что учитывают при решении соответствующих технологических и технических задач. От состояния М. с. часто решающим образом зависит устойчивость высокодисперсных систем: золей, эмульсий, суспензий. Важную роль играют М. с. также в разнообразных биологических системах. Так, во всех клетках живых организмов имеются мембранные структуры. Основу биологических мембран (См. Биологические мембраны) составляют два М. с. белковых молекул, между которыми расположен двойной (бимолекулярный) слой липидов. Толщина такой четырёхслойной мембраны 70-80 Å. Чередованием различного рода М. с. обусловлена также ламеллярная (слоистая) структура некоторых клеточных органоидов, например хлоропластов (См. Хлоропласты) в клетках зелёных растений. Искусственные М. с. применяют как модели биологических мембран при изучении их структуры и функций.

Лит.: Adamson A. W., Physical chemistry of surfaces, 2 ed., N. Y. - [a. o.], 1971; Gaines G. L., Insoluble monolayers at liquid-gas interfaces, N. Y. - [a. o.], [1966]; Береджик Н., Исследование мономолекулярных слоев полимеров, в кн.: Новейшие методы исследования полимеров, пер. с англ., М., 1966, гл. 16.

Л. А. Шиц.

АСТЕНОСФЕРА         
(от греч. asthenes - слабый и сфера), слой пониженной твердости, прочности и вязкости в верхней мантии Земли, подстилающий литосферу. Верхняя граница на глубине ок. 100 км под материками и ок. 50 км под дном океана; нижняя - на глубине 250-350 км. Астеносфера играет важную роль в происхождении эндогенных процессов, протекающих в земной коре (магматизм, метаморфизм и др.).

Википедия

Астеносфера

Астеносфе́ра (от др.-греч. ἀσθενής «бессильный» и σφαῖρα «шар») — слой в верхней мантии планеты (в частности, Земли). Более пластична, чем соседние слои. Это даёт возможность блокам литосферы (твёрдой оболочки планеты) двигаться по ней, а также обеспечивает изостатическое равновесие этих блоков.

Что такое Г<font color="red">у</font>тенберга слой - определение