ДИНАМИКА: СТАТИКА И РАВНОВЕСИЕ - определение. Что такое ДИНАМИКА: СТАТИКА И РАВНОВЕСИЕ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ДИНАМИКА: СТАТИКА И РАВНОВЕСИЕ - определение

Молекулярная динамика; Классическая молекулярная динамика
Найдено результатов: 6307
ДИНАМИКА: СТАТИКА И РАВНОВЕСИЕ      
К статье ДИНАМИКА
Равновесие. Тело, находящееся в состоянии покоя или равномерного и прямолинейного движения, находится в равновесии. Равнодействующая всех сил, действующих на такое тело, равна нулю. Если на тело, находящееся в равновесии, действуют только две силы, то они должны быть равны по величине и противоположны по направлению, так как только в этом случае их равнодействующая равна нулю. На рис. 1 показаны два примера тела, находящегося в равновесии в условиях, когда на него действуют две силы: лампа, стоящая на столе, и лампа, висящая на потолке. На настольную лампу действуют направленная вниз сила тяжести W, т.е. ее вес, и направленная вверх сила сопротивления стола F. Поскольку лампа находится в состоянии покоя, сила F должна быть равна по величине и противоположна по направлению силе W. Точно так же в случае висящей лампы тянущая вниз сила W должна быть равна по величине и противоположна по направлению тянущей вверх силе F натяжения шнура, на котором она подвешена.
Разложение сил. Когда число сил, действующих на тело, находящееся в равновесии, больше двух, анализ несколько усложняется. Например, если лампа подвешена между двумя столбами на разных расстояниях от них (рис. 2,а), то на нее действуют три силы - силы натяжения двух шнуров и вес лампы. Сила натяжения одного шнура F1 направлена вверх и влево, а другого, F2, - вверх и вправо, тогда как сила тяжести W тянет лампу вниз. Поскольку лампа находится в равновесии, равнодействующая всех сил, приложенных к ней, должна быть равна нулю. Следовательно, сумма вертикальных (направленных вверх) составляющих сил натяжения двух шнуров должна быть равна по величине (и противоположна по направлению) силе веса, а горизонтальные составляющие двух сил натяжения должны быть одинаковы по величине (и противоположно направлены). Это можно показать, разложив обе силы на составляющие по правилу параллелограмма сил. Согласно этому фундаментальному правилу физики, всякую силу можно разложить на горизонтальную и вертикальную составляющие, построив прямоугольник, для которого эта сила была бы диагональю (рис. 2,б). Горизонтальная и вертикальная стороны прямоугольника дадут горизонтальную и вертикальную составляющие силы соответственно. (И наоборот, если две силы приложены в одной точке, то, построив параллелограмм, двумя смежными сторонами которого являются эти две силы, можно найти их равнодействующую как диагональ параллелограмма.) Поскольку вертикальные составляющие обеих сил натяжения шнуров направлены вверх по одной линии, они складываются арифметически. Эта равнодействующая R двух вертикальных составляющих равна по величине и противоположна по направлению силе W (рис. 2,в). Горизонтальные составляющие сил, с которыми действуют на лампу два шнура, изображены как равные и противоположно направленные силы F1x и F2x.
Равновесие на наклонной плоскости. Если на наклонную плоскость положить брусок, то в отсутствие трения он соскользнет по ней вниз. Анализ действующих сил позволяет объяснить отсутствие равновесия в рассматриваемом случае. На брусок (рис. 3) действует только одна сила - его вес W. Ее можно разложить на две составляющие P и Q, одна из которых параллельна, а другая - перпендикулярна наклонной плоскости. Составляющая P, перпендикулярная наклонной плоскости, никак не влияет на движение по этой плоскости и уравновешивается направленной вверх по нормали силой реакции N. В то же время сила Q ничем не уравновешена и тянет брусок по наклонной плоскости вниз. Величина силы Q определяется, очевидно, двумя факторами - величиной силы W и крутизной наклона плоскости. Чем больше каждый из них, тем больше сила Q. Если бы плоскость не была наклонной, то сила P равнялась бы весу W, а силы Q не было бы вовсе. Если бы плоскость была вертикальной, то сила Q равнялась бы весу W и брусок свободно упал бы вниз. Чтобы брусок на наклонной плоскости был в равновесии, к нему должна быть приложена действующая вправо и вверх сила, равная по величине, но противоположная по направлению силе Q. Если наклонная плоскость не идеальна, т.е. существует трение, то на стремящийся соскользнуть вниз брусок действует сила трения, направленная в сторону, противоположную его движению. Таким образом, если сила трения равна силе Q, последняя уравновешивается и брусок остается неподвижно лежать на наклонной плоскости, а если сила трения меньше Q, то брусок будет скользить вниз, но медленнее, чем это было бы в отсутствие трения.
Равновесие и вращение. Во всех рассмотренных примерах равновесия действующие силы не только были равны по величине и противоположны по направлению, но и лежали на одной прямой или проходили через одну точку. Если же на твердое тело действуют силы, которые нельзя свести к одной, то они заставляют тело вращаться. (Две параллельные силы, равные по величине и противоположно направленные, называются парой сил.) Для того чтобы тело в таких условиях было в равновесии, т.е. не вращалось, пара сил должна быть уравновешена двумя такими же силами, вращающими тело в другую сторону.
Момент силы. Если твердое тело закреплено в одной точке на шарнире и на него действует лишь одна сила, заставляющая его вращаться вокруг этой точки, то говорят, что тело вращается под действием момента силы. Момент силы равен произведению силы на ее плечо, т.е. на расстояние по перпендикуляру от точки закрепления до линии действия силы (рис. 4,а). Если на твердое тело действуют несколько сил, то тело не будет вращаться только при условии, что сумма моментов всех сил равна нулю (рис. 4,б). См. также СТАТИКА
.
Равномерное движение. Тело движется равномерно, если в любую единицу времени своего движения оно проходит одно и то же расстояние в одном и том же направлении. Примером прямолинейного равномерного движения может служить движение космического аппарата, летящего по инерции в межзвездном пространстве достаточно далеко от всех небесных тел, там, где гравитационные поля ничтожно малы. Коль скоро на него не действуют никакие внешние силы, он будет, не останавливаясь, двигаться по прямой линии с постоянной скоростью. Но как только космический аппарат приблизится к какому-либо небесному телу, он окажется в гравитационном поле этого тела и начнет с нарастающей скоростью отклоняться к нему от прямолинейной траектории. Если же в межзвездном пространстве он войдет в плотное облако космической пыли, то (если отвлечься от гравитационного воздействия пыли) он по-прежнему будет двигаться прямолинейно, но с замедлением. В обоих случаях изменение характера движения вызывается действием неуравновешенных внешних сил.
Экономическое равновесие         
Экономи́ческое равнове́сие () — состояние экономики, при котором произведенная продукция реализована, а спрос удовлетворен в условиях, когда имеющиеся трудовые ресурсы и производственные мощности используются в полном объёме, а нарушаемые пропорции быстро восстанавливаются. В экономике, экономическое равновесие характеризует состояние, в котором экономические силы сбалансированы и, в отсутствие внешних воздействий, (сбалансированные) величины экономических переменных не будут изменяться.
Системная динамика         
  • Динамическая диаграмма «Вывод на рынок нового продукта»
НАПРАВЛЕНИЕ В ИЗУЧЕНИИ СЛОЖНЫХ СИСТЕМ
Динамика систем; Системодинамика
Системная динамика — направление в изучении сложных систем, исследующее их поведение во времени и в зависимости от структуры элементов системы и взаимодействия между ними. В том числе: причинно-следственных связей, петель обратных связей, задержек реакции, влияния среды и других. Особое внимание уделяется компьютерному моделированию таких систем.
СТАТИКА         
  • Пример статического равновесия при равенстве нулю суммы всех сил. 1 - сила реакции нормального давления, 7 - сила реакции в шарнире.
раздел механики, предметом которого являются материальные тела, находящиеся в состоянии покоя при действии на них внешних сил. В широком смысле слова статика - это теория равновесия любых тел - твердых, жидких или газообразных. В более узком понимании данный термин относится к изучению равновесия твердых тел, а также нерастягивающихся гибких тел - тросов, ремней и цепей. Равновесие деформирующихся твердых тел рассматривается в теории упругости, а равновесие жидкостей и газов - в гидроаэромеханике. См. ГИДРОАЭРОМЕХАНИКА
.
Историческая справка. Статика - самый старый раздел механики; некоторые из ее принципов были известны уже древним египтянам и вавилонянам, о чем свидетельствуют построенные ими пирамиды и храмы. Среди первых создателей теоретической статики был Архимед (ок. 287-212 до н.э.), который разработал теорию рычага и сформулировал основной закон гидростатики. Родоначальником современной статики стал голландец С.Стевин (1548-1620), который в 1586 сформулировал закон сложения сил, или правило параллелограмма, и применил его в решении ряда задач.
Основные законы. Законы статики вытекают из общих законов динамики как частный случай, когда скорости твердых тел стремятся к нулю, но по историческим причинам и педагогическим соображениям статику часто излагают независимо от динамики, строя ее на следующих постулируемых законах и принципах: а) законе сложения сил, б) принципе равновесия и в) принципе действия и противодействия. В случае твердых тел (точнее, идеально твердых тел, которые не деформируются под действием сил) вводится еще один принцип, основанный на определении твердого тела. Это принцип переносимости силы: состояние твердого тела не изменяется при перемещении точки приложения силы вдоль линии ее действия.
Сила как вектор. В статике силу можно рассматривать как тянущее или толкающее усилие, имеющее определенные направление, величину и точку приложения. С математической точки зрения, это вектор, а потому ее можно представить направленным отрезком прямой, длина которого пропорциональна величине силы. (Векторные величины, в отличие от других величин, не имеющих направления, обозначаются полужирными буквами.)
Параллелограмм сил. Рассмотрим тело (рис. 1,а), на которое действуют силы F1 и F2, приложенные в точке O и представленные на рисунке направленными отрезками OA и OB. Как показывает опыт, действие сил F1 и F2 эквивалентно одной силе R, представленной отрезком OC. Величина силы R равна длине диагонали параллелограмма, построенного на векторах OA и OB как его сторонах; ее направление показано на рис. 1,а. Сила R называется равнодействующей сил F1 и F2. Математически это записывается в виде R = F1 + F2, где сложение понимается в геометрическом смысле слова, указанном выше. Таков первый закон статики, называемый правилом параллелограмма сил.
Равнодействующая сила. Вместо того чтобы строить параллелограмм OACB, для определения направления и величины равнодействующей R можно построить треугольник OAC, перенеся вектор F2 параллельно самому себе до совмещения его начальной точки (бывшей точки O) c концом (точкой A) вектора OA. Замыкающая сторона треугольника OAC будет, очевидно, иметь ту же величину и то же направление, что и вектор R (рис. 1,б). Такой способ отыскания равнодействующей можно обобщить на систему многих сил F1, F2, ..., Fn, приложенных в одной и той же точке O рассматриваемого тела. Так, если система состоит из четырех сил (рис. 1,в), то можно найти равнодействующую сил F1 и F2, сложить ее с силой F3, затем сложить новую равнодействующую с силой F4 и в результате получить полную равнодействующую R. Равнодействующая R, найденная таким графическим построением, представляется замыкающей стороной многоугольника сил OABCD (рис. 1,г).
Данное выше определение равнодействующей можно обобщить на систему сил F1, F2, ..., Fn, приложенных в точках O1, O2, ..., On твердого тела. Выбирается точка O, называемая точкой приведения, и в ней строится система параллельно перенесенных сил, равных по величине и направлению силам F1, F2, ..., Fn. Равнодействующая R этих параллельно перенесенных векторов, т.е. вектор, представленный замыкающей стороной многоугольника сил, называется равнодействующей сил, действующих на тело (рис. 2). Ясно, что вектор R не зависит от выбранной точки приведения. Если величина вектора R (отрезок ON) не равна нулю, то тело не может находиться в покое: в соответствии с законом Ньютона всякое тело, на которое действует сила, должно двигаться с ускорением. Таким образом, тело может находиться в состоянии равновесия только при условии, что равнодействующая всех сил, приложенных к нему, равна нулю. Однако это необходимое условие нельзя считать достаточным - тело может двигаться, когда равнодействующая всех приложенных к нему сил равна нулю.
В качестве простого, но важного примера, поясняющего сказанное, рассмотрим тонкий жесткий стержень длиной l, вес которого пренебрежимо мал по сравнению с величиной приложенных к нему сил. Пусть на стержень действуют две силы F и ?F, приложенные к его концам, равные по величине, но противоположно направленные, как показано на рис. 3,а. В этом случае равнодействующая R равна F - F = 0, но стержень не будет находиться в состоянии равновесия; очевидно, он будет вращаться вокруг своей средней точки O. Система двух равных, но противоположно направленных сил, действующих не по одной прямой, представляет собой "пару сил", которую можно характеризовать произведением величины силы F на "плечо" l. Значимость такого произведения можно показать путем следующих рассуждений, которые иллюстрируют правило рычага, выведенное Архимедом, и приводят к заключению об условии вращательного равновесия. Рассмотрим легкий однородный жесткий стержень, способный поворачиваться вокруг оси в точке O, на который действует сила F1, приложенная на расстоянии l1 от оси, как показано на рис. 3,б. Под действием силы F1 стержень будет поворачиваться вокруг точки O. Как нетрудно убедиться на опыте, вращение такого стержня можно предотвратить, приложив некоторую силу F2 на таком расстоянии l2, чтобы выполнялось равенство F2l2 = F1l1.
Таким образом, вращение можно предотвратить бесчисленными способами. Важно лишь выбрать силу и точку ее приложения так, чтобы произведение силы на плечо было равно F1l1. Это и есть правило рычага.
Нетрудно вывести условия равновесия системы. Действие сил F1 и F2 на ось вызывает противодействие в виде силы реакции R, приложенной в точке O и направленной противоположно силам F1 и F2. Согласно закону механики о действии и противодействии, величина реакции R равна сумме сил F1 + F2. Следовательно, равнодействующая всех сил, действующих на систему, равна F1 + F2 + R = 0, так что отмеченное выше необходимое условие равновесия выполняется. Сила F1 создает крутящий момент, действующий по часовой стрелке, т.е. момент силы F1l1 относительно точки O, который уравновешивается действующим против часовой стрелки моментом F2l2 силы F2. Очевидно, что условием равновесия тела является равенство нулю алгебраической суммы моментов, исключающее возможность вращения. Если сила F действует на стержень под углом ?, как показано на рис. 4,а, то эту силу можно представить в виде суммы двух составляющих, одна из которых (Fp), величиной F cos?, действует параллельно стержню и уравновешивается реакцией опоры ?Fp, а другая (Fn), величиной F sin?, направлена под прямым углом к рычагу. В этом случае крутящий момент равен Fl sin?; он может быть уравновешен любой силой, которая создает равный ему момент, действующий против часовой стрелки.
Чтобы проще было учитывать знаки моментов в тех случаях, когда на тело действует много сил, момент силы F относительно любой точки O тела (рис. 4,б) можно рассматривать как вектор L, равный векторному произведению r?F вектора положения r на силу F. Таким образом, L = r?F. Нетрудно показать, что если на твердое тело действует система сил, приложенных в точках O1, O2, ..., On (рис. 5), то эту систему можно заменить равнодействующей R сил F1, F2, ..., Fn, приложенной в любой точке O. тела, и парой сил L, момент которых равен сумме + + ... + . Чтобы убедиться в этом, достаточно мысленно приложить в точке O. систему пар равных, но противоположно направленных сил F1 и ?F1; F2 и ?F2; ...; Fn и ?Fn, что, очевидно, не изменит состояния твердого тела.
Но сила F1, приложенная в точке O1, и сила -F1, приложенная в точке O?, образуют пару сил, момент которых относительно точки O. равен r1?F1. Точно так же силы F2 и ?F2, приложенные в точках O2 и O. соответственно, образуют пару с моментом r2?F2, и т.д. Суммарный момент L всех таких пар относительно точки O. дается векторным равенством L = + + ... + . Остальные силы F1, F2, ..., Fn, приложенные в точке O?, в сумме дают равнодействующую R. Но система не может находиться в равновесии, если величины R и L отличны от нуля. Следовательно, условие равенства нулю одновременно величин R и L является необходимым условием равновесия. Можно показать, что оно же является и достаточным, если тело первоначально покоится. Итак, задача о равновесии сводится к двум аналитическим условиям: R = 0 и L = 0. Эти два уравнения представляют собой математическую запись принципа равновесия.
Теоретические положения статики широко применяются при анализе сил, действующих на конструкции и сооружения. В случае непрерывного распределения сил суммы, которые дают результирующий момент L и равнодействующую R, заменяются интегралами и в соответствии с обычными методами интегрального исчисления. См. также МЕХАНИКА; ПРОЧНОСТНОЙ РАСЧЕТ КОНСТРУКЦИЙ.
Статика         
  • Пример статического равновесия при равенстве нулю суммы всех сил. 1 - сила реакции нормального давления, 7 - сила реакции в шарнире.
Ста́тика (от , «неподвижный») — раздел механики, в котором изучаются условия равновесия механических систем под действием приложенных к ним сил и возникших моментов.
статика         
  • Пример статического равновесия при равенстве нулю суммы всех сил. 1 - сила реакции нормального давления, 7 - сила реакции в шарнире.
1. ж.
1) Раздел теоретической механики, изучающий законы равновесия тел.
2) Равновесие тел под действием приложенных к ним сил (в физике).
2. ж.
1) Отсутствие движения, состояние покоя; неподвижность.
2) перен. Отсутствие развития.
СТАТИКА         
  • Пример статического равновесия при равенстве нулю суммы всех сил. 1 - сила реакции нормального давления, 7 - сила реакции в шарнире.
(греч. statike), раздел механики, в котором изучаются условия равновесия тел под действием сил. Кроме статики твердого тела различают статику жидкостей (гидростатику) и статику газов (аэростатику).
статика         
  • Пример статического равновесия при равенстве нулю суммы всех сил. 1 - сила реакции нормального давления, 7 - сила реакции в шарнире.
жен., ·*греч. начала механики, наука о равновесии, покое. -тический, к ней относящийся. Статистика, наука о силе и богатстве государства, о состоянии его в данную пору; история и география в известный срок. -тический, к сему относящийся. Статистик, ученый, писатель, занимающийся сею наукой. Статист, -тка, актер, актриса без речей, немой лицедей.
статика         
  • Пример статического равновесия при равенстве нулю суммы всех сил. 1 - сила реакции нормального давления, 7 - сила реакции в шарнире.
СТ'АТИКА, статики, мн. нет, ·жен. (·греч. statike-равновесие).
1. Отдел теоретической механики, учение об условиях равновесия тел (мех.).
2. Состояние покоя для данного момента; ант. динамика
во 2 ·знач. (научн.).
Групповая динамика         
Групповая динамика — процессы взаимодействия членов малой группы, а также изучающее эти процессы научное направление; его основателем считается Курт Левин, который и ввел термин групповая динамика, описывающий позитивные и негативные процессы, происходящие в социальной группе.

Википедия

Метод классической молекулярной динамики

Метод молекулярной динамики (метод МД) — метод, в котором временная эволюция системы взаимодействующих атомов или частиц отслеживается интегрированием их уравнений движения

Что такое ДИНАМИКА: СТАТИКА И РАВНОВЕСИЕ - определение