ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ - определение. Что такое ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ - определение

РАЗДЕЛ МАТЕМАТИКИ, ИЗУЧАЮЩИЙ ГЛАДКИЕ МНОГООБРАЗИЯ
Дифференциальная топология; Дифгем; Дифференциальные геометрия и топология; Дифференциальная геометрия и топология
Найдено результатов: 253
Дифференциальная геометрия         

раздел геометрии, в котором геометрические образы изучаются методами математического анализа. Главными объектами Д. г. являются произвольные достаточно гладкие кривые (линии) и поверхности евклидова пространства, а также семейства линий и поверхностей. Обычно в Д. г. исследуются локальные свойства геометрических образов, которые присущи сколь угодно малой их части. Рассматриваются также и свойства геометрических образов в целом (например, свойства замкнутых выпуклых поверхностей).

Геометрические объекты, изучаемые в Д. г., обычно подчинены некоторым требованиям гладкости. Как правило, эти требования выражаются в том, что функции, задающие указанные объекты, не менее двух раз непрерывно дифференцируемы.

Сущность методов Д. г., применяемых для выяснения локальных свойств геометрических объектов, проще всего уяснить на примере локального исследования формы кривых.

В каждой точке М достаточно гладкой кривой L можно построить касательную (См. Касательная) прямую МТ и соприкасающуюся плоскость (См. Соприкасающаяся плоскость) π (рис. 1). При этом касательная МТ является пределом секущей MN при неограниченном приближении точки N к М по кривой L, а соприкасающаяся плоскость есть предел переменной плоскости, проходящей через касательную МТ и точку N при приближении N к М по L. Касательную МТ можно рассматривать также как прямую, наиболее тесно прилегающую к L вблизи точки М. Соприкасающаяся же плоскость представляет собой плоскость, наиболее тесно прилегающую к L вблизи М.

Для геометрической характеристики искривлённости кривой L вблизи данной точки М рассматривается Соприкасающаяся окружность, представляющая собой окружность, проходящую через М и наиболее тесно прилегающую к L вблизи М. Это свойство выражается в том, что если учитывать величины только 1-го и 2-го порядка малости по сравнению с длиной дуги MN, то участок кривой L вблизи М можно считать дугой соприкасающейся окружности. Соприкасающаяся окружность касается L в точке М и расположена в соприкасающейся плоскости. Её центр называется центром кривизны кривой L в точке М, а радиус - радиусом кривизны L в М.

Для численной характеристики искривлённости L в точке М используется Кривизна k кривой, равная обратной величине радиуса R соприкасающейся окружности: k = 1/R. Кривизну k можно рассматривать и как меру отклонения L от касательной МТ (рис. 1):

или как скорость изменения (вращения) касательной к L (рис. 2):

где α - угол между касательными в точках М и N, а Δs - длина дуги MN.

Мерой отклонения кривой от соприкасающейся плоскости π в точке М служит так называемое Кручение σ, которое определяется как предел отношения угла β между соприкасающимися плоскостями в точках М и N к длине Δs дуги MN при Δs → 0:

При этом угол β берётся со знаком +, если для наблюдателя в М вращение соприкасающейся плоскости в N при приближении N к М происходит против часовой стрелки, и со знаком - в противном случае. Кручение кривой можно рассматривать как скорость изменения (вращения) соприкасающейся плоскости. В частности, для плоской кривой соприкасающаяся плоскость во всех точках совпадает с плоскостью кривой и поэтому кручение такой кривой во всех точках равно нулю. Кривизна k и кручение σ достаточно гладкой кривой L определены в каждой её точке и представляют собой функции параметра, определяющего точки этой кривой. Для вычисления k и σ используется какой-либо способ задания кривой. Чаще всего кривая L задаётся параметрическими уравнениями в прямоугольных координатах:

x = φ(t), y = ψ(t), z = χ(t). (1)

При изменении параметра t точка М с координатами (x, у, z) описывает кривую L. Иными словами, параметрические уравнения кривой связаны с представлением о кривой как траектории движущейся точки. Правые части (1) могут рассматриваться и как проекции на оси координат радиуса-вектора r переменной точки М кривой L. Вектор r' с координатами {φ'(t), ψ'(t), χ'(t)} называется производной вектор-функции r (t) и направлен по касательной к L в точке М.

Кривизна и кручение вычисляются по формулам

σ = r'r"r"'/[r', r"]2,

в которых [r', r"] - векторное, a r'r''r"' - смешанное произведение (см. Векторное исчисление).

С каждой точкой М кривой L связаны три единичных вектора: касательной (t), главной нормали (n) и бинормали (b) (рис. 1). При этом вектор (n) расположен в соприкасающейся плоскости и направлен от точки М к центру кривизны L в М, а вектор b ортогонален t и n и направлен так, что векторы t, n и b образуют правую тройку. Указанная тройка векторов образует так называемый основной, или сопровождающий, триедр кривой L. Плоскости векторов (n, b) и (t, b) называются соответственно нормальной и спрямляющей плоскостями L в М.

Формулы для производных векторов t, n, b по длине s дуги L называются формулами Френе. Они играют фундаментальную роль как в теории кривых, так и в приложениях этой теории (в механике, теоретической физике и т.д.). Эти формулы имеют вид

Если кривизна и кручение не равны нулю в точке М, то можно сделать определённые заключения о форме L вблизи М: проекции L на соприкасающуюся и нормальную плоскости в М имеют вид, изображённый соответственно на рис. 3 и 4. Форма проекции на спрямляющую плоскость зависит от знака кручения. На рис. 5 и 6 изображены проекции L на спрямляющую плоскость для σ > 0 и σ < 0. Кривизна и кручение вполне определяют кривую. Именно, если между точками двух кривых установлено соответствие так, что соответствующие дуги этих кривых имеют одинаковую длину и в соответствующих точках кривые имеют равные кривизны и равные кручения, то эти кривые могут быть совмещены посредством движения.

По аналогии с кривыми исследуется локальное строение формы поверхностей. В каждой точке М достаточно гладкой поверхности S можно построить касательную плоскость (См. Касательная плоскость) γ и однозначно определённый соприкасающийся параболоид π (рис. 7), который может выродиться в параболический цилиндр или плоскость. При этом касательную плоскость можно рассматривать как плоскость, наиболее тесно прилегающую к S вблизи М. Соприкасающийся же параболоид характеризуется тем, что в окрестности точки М он совпадает с S с точностью до величин третьего порядка малости по сравнению с размерами этой окрестности. С помощью соприкасающихся параболоидов точки М поверхностей классифицируются следующим образом: эллиптическая (рис. 8) (соприкасающийся параболоид - эллиптический), гиперболическая (рис. 9) (соприкасающийся параболоид - гиперболический), параболическая (рис. 10) (соприкасающийся параболоид - параболический цилиндр), точка уплощения (рис. 11) (соприкасающийся параболоид - плоскость).

Обычно для исследования строения поверхности используются так называемая первая и вторая основные квадратичные формы поверхности.

Пусть поверхность S определена параметрическими уравнениями:

x = φ (u, v), y = ψ (u, v), z = χ (u, v). (2)

При фиксированном значении v уравнения (2) определяют на S линию, называемую координатной линией u. Аналогично определяется линия v. Координатные линии u и v образуют на S параметрическую сеть (если, например, сферу радиуса 1 задать параметрическими уравнениями

х = cos u cos v, у = cos u sin v, z = sin u,

то параметрической сетью линий u и v будут меридианы и параллели этой сферы). Величины u и v называются также внутренними координатами, т.к. точка на поверхности есть точка пересечения проходящих через неё координатных линий, т. е. может быть найдена путём построений на поверхности без обращения к объемлющему пространству.

Радиус-вектор r произвольной точки М на S определяется уравнениями (2) как функция u и v. Частные производные ru и rv этой функции суть векторы, касательные соответственно к линиям u и v. Эти векторы в точке М лежат в касательной плоскости к S в М. Векторное произведение [ru, rv] определяет нормаль к S в точке М.

Пусть s - длина дуги линии L на S и пусть u = f (t), v = g (t) - параметрические уравнения во внутренних координатах. Тогда, вдоль L r и s будут функциями от t, причём дифференциал s определяется равенством ds2 = dx2 + dy2 + dz2, правая часть которого есть скалярный квадрат вектора dr = rudu + rvdv, т. е. ds2 = dr2. Поэтому

ds2 = r2udu2 + 2rurvdudv + r2vdv2.

С помощью обозначений r2u = Е, rurv = F, r2v = G выражение для ds2 можно записать в виде

ds2 = Edu2 + 2Fdudv + Gdv2. (3)

Правая часть соотношения (3) называется первой основной квадратичной формой поверхности S. С помощью этой формы можно измерять длины дуг на поверхности путём интегрирования выражения

вдоль рассматриваемой дуги. Поэтому форма (3) называется также метрической формой поверхности. Первая форма определяет также внутреннюю геометрию (См. Внутренняя геометрия) поверхности, т. е. совокупность фактов, которые могут быть получены путём измерений на поверхности, без обращения к объемлющему пространству. Внутренняя геометрия поверхности не меняется при её изгибании - деформации поверхности как абсолютно гибкой и нерастяжимой плёнки.

Вторая основная квадратичная форма поверхности представляет собой выражение

Ldu2 + 2Мdudv + Ndv2,

в котором L = ruun, М = ruvn, N = rvvn (n - единичный вектор нормали к S в точке М). С помощью второй формы можно получить представление о пространственной форме поверхности. Например, кривизны 1/R нормальных сечений поверхности в данной точке М (т. е. линий пересечения S с плоскостями, проходящими через нормаль в М) вычисляются по формуле

Две основные формы поверхности, заданные в каких-либо внутренних координатах, определяют поверхность с точностью до положения в пространстве. Если заданы две формы

Edu2 + 2Fdudv + Gdv2

и

Ldu2 + 2Mdudv + Ndv2,

первая из которых положительная, а коэффициенты L, M и N второй удовлетворяют некоторой системе уравнений, из которых одно (полученное К. Гауссом) алгебраическое, а два других (полученные К. М. Петерсоном) - линейные дифференциальные уравнения с частными производными первого порядка, то найдётся поверхность, для которой эти формы являются соответственно первой и второй основными формами.

Отмеченные уравнения Гаусса - Петерсона играют фундаментальную роль в теории поверхностей.

Подробнее о поверхностях см. Поверхностей теория.

Одним из объектов исследований в Д. г. являются семейства кривых и поверхностей. Такие семейства задаются посредством уравнений, содержащих параметры. Например, уравнение (х - α)2 + у2 = 1, содержащее параметр α, определяет семейство окружностей радиуса 1 с центрами в точках (α, 0), т. е. на оси Ox (рис. 12). С семейством кривых (поверхностей) связано понятие огибающей - такой кривой (поверхности), которая касается всех кривых (поверхностей) семейства. В рассмотренном выше примере огибающей будет пара параллельных оси Ox прямых, отстоящих от неё на расстоянии 1. Особенно детально в Д. г. исследованы двупараметрические семейства прямых b в пространстве, называемые конгруэнциями. Простейший пример конгруэнции - семейство параллельных прямых в пространстве. Истоком теории конгруэнций является геометрическая оптика.

Различные разделы Д. г. посвящены изучению во всевозможных аспектах так называемых дифференциально-геометрических многообразии (См. Многообразие). Примерами таких многообразий могут служить кривые (одномерные многообразия), поверхности (двумерные многообразия), обычное евклидово пространство (трёхмерное многообразие). Более сложным примером может служить четырёхмерное многообразие, элементами которого являются прямые обычного евклидова пространства (прямая в декартовых координатах определяется уравнениями вида z = ax + b, z = су + d; числа a, b, с, d можно рассматривать как координаты этой прямой).

Изучение дифференциально-геометрических многообразий ведётся по следующим основным направлениям. 1) Геометрия транзитивной группы отображений многообразия на себя, или геометрия "локальной группы" отображений. В тематику этих вопросов входят обычная классическая локальная Д. г. (изучение инвариантов группы движений евклидова пространства), аффинная, проективная и конформная геометрии (изучение инвариантов соответствующей группы преобразований). 2) Геометрия многообразий с римановой метрикой (римановых пространств (См. Риманово пространство)), представляющая собой обобщение на многомерный случай внутренней геометрии поверхностей, которое можно рассматривать как двумерные римановы пространства. Геометрия римановых пространств играет важную роль в теории относительности. 3) Геометрия так называемых финслеровых пространств, являющихся обобщением римановых пространств. 4) Геометрия многообразий со связностью, т. е. многообразий, в которых указан способ, с помощью которого можно сравнивать геометрические образы, расположенные в касательных пространствах в разных точках.

Возникновение Д. г. связано с именами Л. Эйлера и Г. Монжа. Ими к концу 18 в. были получены важные факты теории поверхностей. Значительный вклад в развитие Д. г. сделан в начале 19 в. К. Гауссом, который ввёл обе основные квадратичные формы. Им же была доказана теорема об инвариантности полной кривизны относительно изометрических преобразований. Фактически им были заложены основы внутренней геометрии поверхностей. Построение основ классической теории поверхностей было завершено в середине 19 в. основателем московской геометрической школы К. М. Петерсоном. В середине и во 2-й половине 19 в. много глубоких и общих результатов по классической теории поверхностей было получено Ф. Миндингом, Ж. Лиувиллем (См. Лиувилль), Э. Бельтрами, Ж. Г. Дарбу, Л. Бианки. Ряд замечательных результатов по классической Д. г. был получен русскими учёными Д. Ф. Егоровым, Н. Н. Лузиным, С. П. Финиковым и др.

Развитие др. направлений в Д. г. связано с именами Б. Римана, Г. Ламе, Ф. Клейна, Г. Вейля (См. Вейль), Э. Картана.

В СССР разрабатывались различные направления Д. г.; наибольшие успехи относятся к области проблем "в целом" (А. Д. Александров, А. В. Погорелов и др.).

Лит.: Монж Г., Приложение анализа к геометрии, пер. с франц., М. - Л., 1936; Стройк Д. Дж., Очерк истории дифференциальной геометрии до XX столетия, пер. с англ., М. - Л., 1941; Погорелов А. В., Дифференциальная геометрия, 5 изд., М., 1969; Рашевский П. К., Курс дифференциальной геометрии, 3 изд., М., 1950; Бляшке В., Введение в дифференциальную геометрию, пер. с нем., М., 1957; Рашевский П. К., Риманова геометрия и тензорный анализ, 2 изд., М., 1964; Александров А. Д., Внутренняя геометрия выпуклых поверхностей, М. - Л., 1948; Погорелов А. В., Внешняя геометрия выпуклых поверхностей, М., 1969.

Э. Г. Позняк.

Рис. 1 к ст. Дифференциальная геометрия.

Рис. 2 к ст. Дифференциальная геометрия.

Рис. 3 к ст. Дифференциальная геометрия.

Рис. 4 к ст. Дифференциальная геометрия.

Рис. 5 к ст. Дифференциальная геометрия.

Рис. 6 к ст. Дифференциальная геометрия.

Рис. 7 к ст. Дифференциальная геометрия.

Рис. 8 к ст. Дифференциальная геометрия.

Рис. 9 к ст. Дифференциальная геометрия.

Рис. 10 к ст. Дифференциальная геометрия.

Рис. 11 к ст. Дифференциальная геометрия.

Рис. 12 к ст. Дифференциальная геометрия.

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ         
раздел геометрии, в котором свойства кривых, поверхностей и других геометрических многообразий изучаются методами математического анализа, в первую очередь - дифференциального исчисления. Работы по дифференциальной геометрии К.Гаусса (1777-1855), Г.Дарбу (1842-1917), Л.Бианки (1856-1928) и Л.Эйзенхарта (1876-1965) посвящены, главным образом, свойствам, проявляющимся в малой окрестности обычной точки многообразия. Это предмет так называемой дифференциальной геометрии "в малом". Более поздние работы, особенно начиная с 1930-х годов, посвящены изучению взаимосвязей между дифференциальной геометрией малых окрестностей и "глобальными" свойствами всего многообразия. Эту теорию называют дифференциальной геометрией "в целом". Кроме того, дифференциальная геометрия разбивается на разделы по аналогии с подразделением всей геометрии. Если на рассматриваемом многообразии определено расстояние, то возникает "метрическая" дифференциальная геометрия, называемая римановой в честь ее создателя Б.Римана (1826-1866). Аналогично проективная, аффинная и конформная дифференциальные геометрии занимаются изучением дифференциальных свойств пространств, в которых выделяются проективные, аффинные или конформные аспекты. Хотя первоначально дифференциальная геометрия занималась изучением свойств кривых и поверхностей в обычном пространстве, ныне она изучает многообразия любого числа измерений, которые могут быть (а могут и не быть) подпространствами евклидова пространства.
Кривые на плоскости и в пространстве. Будем задавать кривые на плоскости параметрическими уравнениями x = f (s), y = g (s), где s - натуральный параметр, длина дуги кривой. В векторной форме это можно записать так: X = F(s). См. также ВЕКТОР
.
Тогда единичный вектор касательной к кривой задается формулой
Вектор dT/ds в каждой точке кривой перпендикулярен к касательной, а его длина равна кривизне k кривой. Прямая, перпендикулярная касательной, проходящая через точку касания, называется нормалью к кривой. Следовательно, если N - единичный вектор нормали, то
Кроме того, можно показать, что
Если k задана как функция от s, например, k = ?(s), то уравнения (1)-(3) определяют кривую однозначно с точностью до ее положения на плоскости. Соотношение k = ?(s) называется внутренним уравнением кривой.
Кривая в обычном пространстве, не лежащая на плоскости, называется пространственной кривой. Чтобы исследовать дифференциальную геометрию такой кривой, зададим ее параметрическими уравнениями x = f(s), y = g(s), z = k(s) (s - натуральный параметр) или, в векторной форме, уравнением X = F(s). Единичный вектор касательной определяется равенством
Вектор dT/ds в каждой точке задает нормаль к кривой; заметим, что это лишь одна из бесконечного множества нормалей к пространственной кривой в этой точке. Единичный вектор в направлении вектора dT/ds называется единичным вектором главной нормали N кривой, а длина вектора dT/ds, как и в случае плоских кривых, называется кривизной кривой:
Вектор dN/ds перпендикулярен к N, и поэтому его можно записать в виде
где B - единичный вектор нормали, перпендикулярной к N. Прямая, определяемая вектором B, называется бинормалью к кривой, а коэффициент . в (6) - кручением кривой. Наконец, рассмотрим вектор dB/ds; можно показать, что
Соотношения (5)-(7) называются формулами Френе. Из них следует, что если функции k = . (s) и . = . (s) заданы, то кривая определена однозначно с точностью до положения в пространстве. Таким образом, в этих формулах содержится вся теория пространственных кривых. Плоскость, определяемая векторами T и N, называется соприкасающейся, плоскость, содержащая векторы N и B, - нормальной и плоскость, проходящая через векторы B и T, - спрямляющей.
Поверхности в пространстве. Дифференциальные свойства поверхностей в обычном пространстве выводятся из их первой и второй основных квадратичных форм. Пусть поверхность задана параметрическими уравнениями x = f (u1, u2), y = g (u1, u2), z = h (u1, u2) или векторным уравнением X = F (u1, u2). (Верхними индексами здесь нумеруются переменные.) Дифференциал длины дуги ds определяется первой основной формой, а именно
где g11, g12 и g22 - функции от u1 и u2, определяемые выражениями
Полезно также ввести величины gij:
Первая фундаментальная форма полностью определяет внутреннюю геометрию поверхности, т.е. ту геометрию, которую наблюдал бы воображаемый обитатель поверхности, неспособный воспринимать происходящие вне нее явления. Такое двумерное существо находилось бы в положении, сравнимом с положением обычного трехмерного человека, воспринимающего геометрию нашего трехмерного пространства, но неспособного воспринимать свойства пространства большего числа измерений, в котором лежит наше пространство (если такое пространство действительно существует).
Плоскость, касательная к поверхности в точке P, определяется двумя векторами в P, задаваемыми формулами
Единичный вектор нормали N определяется как общий перпендикуляр к T1 и T2. Как и в теории кривых, удобно рассмотреть векторы ?Ti/?uj (i, j = 1, 2). Эти векторы можно разложить по направлениям векторов T1, T2 и N :
Величины Гijk в (9) называются символами Кристоффеля второго рода. Они определяются через величины (символы Кристоффеля первого рода) соотношениями
где по определению
Величины bij в (9) называются коэффициентами второй основной формы поверхности. Сравнивая (9) с (5), нетрудно видеть, что для поверхности bij играют такую же роль, как кривизна для плоских кривых: они описывают внешние свойства поверхности - непостижимые для воображаемого двумерного существа, живущего на поверхности, но доступные пониманию обычного трехмерного человека.
Любой единичный вектор, касательный к поверхности, может быть записан в виде
где g11?1?1 + 2g12?1?2 + g22?2?2 = 1. Кривизна поверхности в направлении вектора . равна
За полуоборот вектора . кривизна k(?) изменяется и достигает в общем случае ровно одного максимального и одного минимального значения. Эти значения соответствуют двум положениям вектора ?, находящимся под прямым углом друг к другу, а соответствующие значения k(?) называются главными кривизнами поверхности. Произведение главных кривизн называется полной (гауссовой) кривизной K поверхности, а их сумма - средней кривизной H. Эти величины определяются выражениями
и
Важную роль играют поверхности с постоянной гауссовой кривизной. При K = 0 поверхность плоская, или развертывающаяся, поскольку у нее такая же внутренняя геометрия, как у плоскости. Примерами развертывающихся поверхностей могут служить прямые круговые конусы и цилиндры. При K 0 поверхность имеет эллиптическую неевклидову геометрию, а при K . 0 - гиперболическую неевклидову геометрию.
Гаусс доказал замечательную теорему относительно кривизны K, утверждающую, что она может быть выражена через одни лишь внутренние величины, а именно через gij и их производные. Это следует из того, что определитель матрицы (bij) равен R1212, где
Величина (Rlijk) называется тензором кривизны поверхности.
Риманова геометрия. Обобщением и абстрактным вариантом только что описанной геометрии поверхности служит риманова геометрия. Она описывает n-мерное многообразие, на котором элемент длины дуги определяется формулой
в некоторой системе координат по аналогии с (8). На обычной поверхности определитель матрицы (gij) положителен, в римановой же геометрии предполагается лишь, что он отличен от нуля. Риманово пространство с римановой геометрией необязательно является подпространством пространства какой-нибудь более высокой размерности. Символы Кристоффеля и тензор кривизны определяются через gij, как и в описанном выше случае обычных поверхностей.
Секционная кривизна K12 риманова пространства в точке P определяется через ориентацию, задаваемую двумя векторами ?1 и ?2:
Если она одинакова для всех векторов ?1 и ?2, то она постоянна и для всех точек P, и пространство называется пространством постоянной кривизны, скажем K, где
Свернутый тензор кривизны, определяемый выражением
играет важную роль в общей теории относительности Эйнштейна. Пространство, в котором Rik = ?gij, называется пространством Эйнштейна.
Дифференциальная геометрия в целом. Наиболее фундаментальная из известных взаимосвязей между топологией и дифференциальной геометрией устанавливается теоремой Гаусса - Бонне, которая утверждает, что для обычных замкнутых поверхностей
где интеграл берется по всей поверхности, K - гауссова кривизна и . - характеристика Эйлера - Пуанкаре. На произвольные замкнутые римановы пространства этот результат был распространен в 1943 К.Аллендёрфером и А.Вейлем. См. также МАТЕМАТИЧЕСКИЙ АНАЛИЗ; ТОПОЛОГИЯ.
ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ         
раздел геометрии, в которой геометрические образы изучаются на основе метода координат средствами дифференциального исчисления. Первоначально предметом дифференциальной геометрии было изучение геометрических образов обычного трехмерного пространства (линий, поверхностей). Со 2-й пол. 19 в. рамки дифференциальной геометрии значительно расширились, включив также изучение т. н. многомерных пространств. Дифференциальная геометрия - важное орудие исследования в механике, теории относительности и др.
Дифференциальная геометрия         
Дифференциа́льная геоме́трия — раздел математики, изучающий гладкие многообразия, обычно с дополнительными структурами.
Структура (дифференциальная геометрия)         
В ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ: СЕЧЕНИЕ РАССЛОЕНИЯ, АССОЦИИРОВАННОГО С ГЛАВНЫМ РАССЛОЕНИЕМ КОРЕПЕРОВ НЕКОТОРОГО МНОГООБРАЗИЯ
В дифференциальной геометрии структурой на многообразии, геометрической величиной или полем геометрических объектов называется сечение расслоения, ассоциированного с главным расслоением кореперов некоторого многообразия M. Интуитивно геометрическую величину можно рассматривать как величину, значение которой зависит не только от точки x многообразия M, но и от выбора корепера, то есть от выбора инфинитезимальной системы координат в точке x (см.
Жёсткость (геометрия)         
Жесткость (геометрия)
Жёсткость — свойство подмногообразия M в евклидовом пространстве (или, более обще, в пространстве постоянной кривизны), заключающееся в том, что любая его изометрическая вариация (бесконечно малое изгибание) является тривиальной, то есть соответствующее её поле скоростей на M индуцируется полем Киллинга на M. Вопрос о жёсткости подмногообразий — по существу вопрос о единственности решения системы дифференциальных уравнений, являющихся линеаризацией системы уравнений для изометричных изгибаний подмногообразия.
Вычислительная геометрия         
Компьютерная геометрия
Вычислительная геометрия — раздел информатики, в котором рассматриваются алгоритмы для решения геометрических задач.
Гиперболическая геометрия         
  • (1) [[евклидова геометрия]];<br>(2) [[геометрия Римана]];<br>(3) геометрия Лобачевского
  • <center>Угол параллельности</center>
  • Заполнение пространства Лобачевского правильными прямоугольными додекаэдрами ({5,3,4})
  • Через точку ''Р'' проходит бесконечно много «прямых», не пересекающих «прямой» ''а''
  • [[Конформно-евклидова модель]]
  • Псевдосфера
  • Замощение плоскости Лобачевского правильными треугольниками ({3;7})
АЛЬТЕРНАТИВНАЯ ФОРМА ГЕОМЕТРИИ
Гиперболическая геометрия; Лобачевского геометрия; Плоскость Лобачевского; Гиперболическая плоскость
Геометрия Лобачевского         
  • (1) [[евклидова геометрия]];<br>(2) [[геометрия Римана]];<br>(3) геометрия Лобачевского
  • <center>Угол параллельности</center>
  • Заполнение пространства Лобачевского правильными прямоугольными додекаэдрами ({5,3,4})
  • Через точку ''Р'' проходит бесконечно много «прямых», не пересекающих «прямой» ''а''
  • [[Конформно-евклидова модель]]
  • Псевдосфера
  • Замощение плоскости Лобачевского правильными треугольниками ({3;7})
АЛЬТЕРНАТИВНАЯ ФОРМА ГЕОМЕТРИИ
Гиперболическая геометрия; Лобачевского геометрия; Плоскость Лобачевского; Гиперболическая плоскость
Геометрия Лобачевского (или гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных аксиомах, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.
Лобачевского геометрия         
  • (1) [[евклидова геометрия]];<br>(2) [[геометрия Римана]];<br>(3) геометрия Лобачевского
  • <center>Угол параллельности</center>
  • Заполнение пространства Лобачевского правильными прямоугольными додекаэдрами ({5,3,4})
  • Через точку ''Р'' проходит бесконечно много «прямых», не пересекающих «прямой» ''а''
  • [[Конформно-евклидова модель]]
  • Псевдосфера
  • Замощение плоскости Лобачевского правильными треугольниками ({3;7})
АЛЬТЕРНАТИВНАЯ ФОРМА ГЕОМЕТРИИ
Гиперболическая геометрия; Лобачевского геометрия; Плоскость Лобачевского; Гиперболическая плоскость

геометрическая теория, основанная на тех же основных посылках, что и обычная Евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. Евклидова аксиома о параллельных гласит: через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. В Л. г. вместо неё принимается следующая аксиома: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Казалось бы, эта аксиома противоречит чрезвычайно привычным представлениям. Тем не менее как эта аксиома, так и вся Л. г. имеет вполне реальный смысл (о чём см. ниже). Л. г. была создана и развита Н. И. Лобачевским (См. Лобачевский), который впервые сообщил о ней в 1826. Л. г. называется неевклидовой геометрией, хотя обычно термину "неевклидова геометрия" придают более широкий смысл, включая сюда и др. теории, возникшие вслед за Л. г. и также основанные на изменении основных посылок евклидовой геометрии. Л. г. называется специально гиперболической неевклидовой геометрией (в противоположность эллиптической геометрии Римана) (см. Неевклидовы геометрии, Римана геометрия).

Л. г. представляет теорию, богатую содержанием и имеющую применение как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще (см. Геометрия). С современной точки зрения можно дать, например, следующее определение Л. г. на плоскости: она есть не что иное, как геометрия внутри круга на обычной (евклидовой) плоскости, лишь выраженная особым образом. Именно, будем рассматривать круг на обычной плоскости (рис. 1) и внутренность его, т. е. круг, за исключением ограничивающей его окружности, назовем "плоскостью". Точкой "плоскости" будет точка внутри круга. "Прямой" будем называть любую хорду (например, а, b, b', MN) (с исключенными концами, т. к. окружность круга исключена из "плоскости"). "Движением" назовем любое преобразование круга самого в себя, которое переводит хорды в хорды. Соответственно, равными называются фигуры внутри круга, переводящиеся одна в другую такими преобразованиями. Тогда оказывается, что любой геометрический факт, описанный на таком языке, представляет теорему или аксиому Л. г. Иными словами, всякое утверждение Л. г. на плоскости есть не что иное, как утверждение евклидовой геометрии, относящееся к фигурам внутри круга, лишь пересказанное в указанных терминах. Евклидова аксиома о параллельных здесь явно не выполняется, т. к. через точку О, не лежащую на данной хорде а (т. е. "прямой"), проходит сколько угодно не пересекающих её хорд ("прямых") (например, b, b'). Аналогично, Л. г. в пространстве может быть определена как геометрия внутри шара, выраженная в соответствующих терминах ("прямые" - хорды, "плоскости" - плоские сечения внутренности шара, "равные" фигуры - те, которые переводятся одна в другую преобразованиями, переводящими шар сам в себя и хорды в хорды). Таким образом, Л. г. имеет совершенно реальный смысл и столь же непротиворечива, как геометрия Евклида. Описание одних и тех же фактов в разных терминах или, напротив, описание разных фактов в одних и тех же терминах представляет характерную черту математики. Она ясно выступает, например, когда одна и та же линия задаётся в разных координатах разными уравнениями или, напротив, одно и то же уравнение в разных координатах представляет различные линии.

Возникновение геометрии Лобачевского. Источником Л. г. послужил вопрос об аксиоме о параллельных, которая известна также как V постулат Евклида (под этим номером утверждение, эквивалентное приведённой выше аксиоме о параллельных, фигурирует в списке постулатов в "Началах" Евклида (См. Начала Евклида)). Этот постулат, ввиду его сложности в сравнении с другими, вызвал попытки дать его доказательство на основании остальных постулатов.

Вот неполный перечень учёных, занимавшихся доказательством V постулата до 19 в.: древнегреческий математики Птолемей (2 в.), Прокл (5 в.) (доказательство Прокла основано на предположении о конечности расстояния между двумя параллельными), Ибн аль-Хайсам из Ирака (конец 10 - начало 11 вв.) (Ибн аль-Хайсам пытался доказать V постулат, исходя из предположения, что конец движущегося перпендикуляра к прямой описывает прямую линию), таджикский математик Омар Хайям (2-я половина 11 - начало 12 вв.), азербайджанский математик Насирэддин Туей (13 в.) (Хайям и Насирэддин при доказательстве V постулата исходили из предположения, что две сходящиеся прямые не могут при продолжении стать расходящимися без пересечения), немецкий математик К. Клавий (Шлюссель, 1574), итальянские математики П. Катальди (впервые в 1603 напечатавший работу, целиком посвященную вопросу о параллельных), Дж. Борелли (1658), Дж. Витале (1680), английский математик Дж. Валлис (1663, опубликовано в 1693) (Валлис основывает доказательство V постулата на предположении, что для всякой фигуры существует ей подобная, но не равная фигура). Доказательства перечисленных выше геометров сводились к замене V постулата др. предположением, казавшимся более очевидным. Итальянский математик Дж. Саккери (1733) сделал попытку доказать V постулат от противного. Приняв предложение, противоречащее постулату Евклида, Саккери развил из него довольно обширные следствия. Ошибочно признав некоторые из этих следствий приводящими к противоречиям, Саккери заключил, что постулат Евклида доказан. Немецкий математик И. Ламберт (около 1766, опубликовано в 1786) предпринял аналогичные исследования, однако он не повторил ошибки Саккери, а признал своё бессилие обнаружить в построенной им системе логическое противоречие. Попытки доказательства постулата предпринимались и в 19 в. Здесь следует отметить работы французского математика А. Лежандра; одно из его доказательств (1800) основано на допущении, что через каждую точку внутри острого угла можно провести прямую, пересекающую обе стороны угла, т. е., как и все его предшественники, он заменил постулат др. допущением. Довольно близко к построению Л. г. подошли немецкие математики Ф. Швейкарт (1818) и Ф. Тауринус (1825), однако ясно выраженной мысли о том, что намечаемая ими теория будет логически столь же совершенна, как и геометрия Евклида, они не имели.

Вопрос о V постулате Евклида, занимавший геометров более двух тысячелетий, был решен Лобачевским. Это решение сводится к тому, что постулат не может быть доказан на основе др. посылок евклидовой геометрии и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий. Лобачевский сделал об этом сообщение в 1826, а в 1829-30 напечатал работу "О началах геометрии" с изложением своей теории. В 1832 была опубликована работа венгерского математика Я. Больяй аналогичного содержания. Как выяснилось впоследствии, немецкий математик К. Ф. Гаусс также пришёл к мысли о возможности существования непротиворечивой неевклидовой геометрии, но скрывал её, опасаясь быть непонятым. Хотя Л. г. развивалась как умозрительная теория и сам Лобачевский называл её "воображаемой геометрией", тем не менее именно Лобачевский рассматривал её не как игру ума, а как возможную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации и тем полностью решен вопрос о её реальном смысле, логической непротиворечивости.

Интерпретации (модели) геометрии Лобачевского. Л. г. изучает свойства "плоскости Лобачевского" (в планиметрии) и "пространства Лобачевского" (в стереометрии). Плоскость Лобачевского - это плоскость (множество точек), в которой определены прямые линии, а также движения фигур (вместе с тем - расстояния, углы и пр.), подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, которая заменяется указанной выше аксиомой Лобачевского. Сходным образом определяется пространство Лобачевского. Задача выяснения реального смысла Л. г. состояла в нахождении моделей плоскости и пространства Лобачевского, т. е. в нахождении таких объектов, в которых реализовались бы соответствующим образом истолкованные положения планиметрии и стереометрии Л. г. (об интерпретации вообще см. Геометрия, раздел Истолкования геометрии). Итальянский математик Э. Бельтрами в 1868 заметил, что геометрия на куске плоскости Лобачевского совпадает с геометрией на поверхностях постоянной отрицательной кривизны, простейший пример которых представляет Псевдосфера (рис. 2). Если точкам и прямым на конечном куске плоскости Лобачевского сопоставлять точки и кратчайшие линии (геодезические) на псевдосфере и движению в плоскости Лобачевского сопоставлять перемещение фигуры по псевдосфере с изгибанием, т. е. деформацией, сохраняющей длины, то всякой теореме Л. г. будет отвечать факт, имеющий место на псевдосфере. Т. о., Л. г. получает простой реальный смысл. При этом длины, углы, площади понимаются в смысле естественного измерения их на псевдосфере. Однако здесь даётся интерпретация только геометрии на куске плоскости Лобачевского, а не на всей плоскости и тем более не в пространстве (в 1901 Д. Гильберт доказал даже, что вообще в евклидовом пространстве не может существовать регулярной поверхности, геометрия на которой совпадает с геометрией всей плоскости Лобачевского).

В 1871 Ф. Клейн указал ту модель как всей плоскости, так и пространства Лобачевского, которая была описана выше и в которой плоскостью служит внутренность круга, а пространством - внутренность шара. Между прочим, в этой модели расстояние между точкам (рис. 1) определяется как ; угол - ещё сложнее.

Позже А. Пуанкаре в связи с задачами теории функций комплексного переменного дал другую модель. За плоскость Лобачевского принимается внутренность круга (рис. 3), прямыми считаются дуги окружностей, перпендикулярных окружности данного круга, и его диаметры, движениями - преобразования, получаемые комбинациями инверсий (См. Инверсия) относительно окружностей, дуги которых служат прямыми. Модель Пуанкаре замечательна тем, что в ней углы изображаются обычными углами. Исходя из таких соображений, можно строить модель Л. г. в пространстве.

Коротко модели Клейна и Пуанкаре можно определить так. В обоих случаях плоскостью Лобачевского может служить внутренность круга (пространством - внутренность шара), и Л. г. есть учение о тех свойствах фигур внутри круга (шара), которые в случае модели Клейна не изменяются при проективных, а в случае модели Пуанкаре - при конформных преобразованиях круга (шара) самого в себя (проективные преобразования есть те, которые переводят прямые в прямые, конформные - те, которые сохраняют углы).

Возможно чисто аналитическое определение модели Л. г. Например, точки плоскости можно определять как пары чисел х, у, прямые можно задавать уравнениями, движения - формулами, сопоставляющими точкам (х, у) новые точки (х', y'). Это будет абстрактно определённая аналитическая геометрия на плоскости Лобачевского, аналогично аналитической геометрии на плоскости Евклида. Т. к. Лобачевский дал основы своей аналитической геометрии, то тем самым он уже фактически наметил такую модель, хотя полное её построение выяснилось уже после того, как на основе работ Клейна и других выявилось само понятие о модели. Другое аналитическое определение Л. г. состоит в том, что Л. г. определяется как геометрия риманова пространства постоянной отрицательной кривизны (см. Римановы геометрии (См. Риманова геометрия)). Это определение было фактически дано ещё в 1854 Б. Риманом и включало модель Л. г. как геометрии на поверхностях постоянной кривизны. Однако Риман не связал прямо своих построений с Л. г., а его доклад, в котором он о них сообщил, не был понят и был опубликован лишь после его смерти (в 1868).

Содержание геометрии Лобачевского. Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, т. к. именно здесь начинается отличие Л. г. от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельных, общи обеим геометриям и образуют т. н. абсолютную геометрию, к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельных строились др. отделы, включая тригонометрию и начала аналитической и дифференциальной геометрии. Приведём несколько фактов Л. г., отличающих её от геометрии Евклида и установленных самим Лобачевским.

1) В Л. г. не существует подобных, но неравных треугольников; треугольники равны, если их углы равны. Поэтому существует абсолютная единица длины, т. е. отрезок, выделенный по своим свойствам, подобно тому как прямой угол выделен своими свойствами. Таким отрезком может служить, например, сторона правильного треугольника с данной суммой углов.

2) Сумма углов всякого треугольника меньше π и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность π - (α + β + γ), где α, β, γ - углы треугольника, пропорциональна его площади.

3) Через точку О, не лежащую на данной прямой а, проходит бесконечно много прямых, не пересекающих а и находящихся с ней в одной плоскости; среди них есть две крайние b, b', которые и называются параллельными прямой а в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) а общий конец (который по определению модели исключается, так что эти прямые не имеют общих точек) (рис. 1,3). Угол ее между прямой b (или b') и перпендикуляром из О на а - т. н. угол параллельности - по мере удаления точки О от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель b с одной стороны (а b' с противоположной) асимптотически приближается к а, а с другой - бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).

4) Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.

5) Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой, или гиперциклом.

6) Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью, или орициклом.

7) Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность - предельная сфера, или орисфера; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.

8) Длина окружности не пропорциональна радиусу, а растет быстрее.

9) Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от π; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2π, и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы Л. г. переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле "предельный" случай Л. г.

Л. г. продолжает разрабатываться многими геометрами; в ней изучаются: решение задач на построение, многогранники, правильные системы фигур, общая теория кривых и поверхностей и т. п. Ряд геометров развивали также механику в пространстве Лобачевского. Эти исследования не нашли непосредственных применений в механике, но дали начало плодотворным геометрическим идеям. В целом Л. г. является обширной областью исследования, подобно геометрии Евклида.

Приложения геометрии Лобачевского. Сам Лобачевский применил свою геометрию к вычислению определённых интегралов. В теории функций комплексного переменного Л. г. помогла построить теорию автоморфных функций (См. Автоморфная функция). Связь с Л. г. была здесь отправным пунктом исследований Пуанкаре, который писал, что "неевклидова геометрия есть ключ к решению всей задачи". Л. г. находит применение также в теории чисел, в её геометрических методах, объединённых под названием "геометрия чисел" (см. Чисел теория). Была установлена тесная связь Л. г. с кинематикой специальной (частной) теории относительности (см. Относительности теория). Эта связь основана на том, что равенство, выражающее закон распространения света

x2 + y2 + z2 = c2t2

при делении на t2, т. е. для скорости света, даёт

vx2 + vy2 + vz2 = c2

- уравнение сферы в пространстве с координатами vx, vy, vz - составляющими скорости по осям х, у, z (в "пространстве скоростей"). Лоренца преобразования сохраняют эту сферу и, т. к. они линейны, переводят прямые пространства скоростей в прямые. Следовательно, согласно модели Клейна, в пространстве скоростей внутри сферы радиуса с, т. е. для скоростей, меньших скорости света, имеет место Л. г.

Замечательное приложение Л. г. нашла в общей теории относительности (см. Тяготение). Если считать распределение масс материи во Вселенной равномерным (это приближение в космических масштабах допустимо), то оказывается, что при определённых условиях пространство имеет Л. г. Т. о., предположение Лобачевского о его геометрии как возможной теории реального пространства оправдалось.

Лит.: Лобачевский Н. И., Сочинения по геометрии, М. - Л., 1946-49 (Полн. собр. соч., т. 1-3); Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию ее идей, М., 1956; Александров П. С., Что такое неевклидова геометрия, М., 1950; Делоне Б. Н., Элементарное доказательство непротиворечивости планиметрии Лобачевского, М., 1956; Широков П. А., Краткий очерк основ геометрии Лобачевского, М., 1955; Каган В. Ф., Лобачевский и его геометрия. Общедоступные очерки, М., 1955; его же, Геометрия Лобачевского и ее предистория, М. - Л., 1949 (Основания геометрии, ч. 1); Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971; Погорелов А. В., Основания геометрии, 3 изд., М., 1968; Розенфельд Б. А., Неевклидовы пространства, М., 1969; Нут Ю. Ю., Геометрия Лобачевского в аналитическом изложении, М., 1961; Андриевская М. Г., Аналитическая геометрия в пространстве Лобачевского, К., 1963.

А. Д. Александров.

Рис. 1 к ст. Лобачевского геометрия.

Рис. 2 к ст. Лобачевского геометрия.

Рис. 3 к ст. Лобачевского геометрия.

Википедия

Дифференциальная геометрия

Дифференциа́льная геоме́трия — раздел математики, изучающий гладкие многообразия, обычно с дополнительными структурами. Они находят множество применений в физике, особенно в общей теории относительности.

Основные подразделы дифференциальной геометрии:

Часто дифференциальная геометрия рассматривается как неделимый раздел вместе с дифференциальной топологией. Различиями между этими разделами могут быть наличие или отсутствие дополнительных структур на гладком многообразии, но может быть также наличие или отсутствие локальных инвариантов: в дифференциальной топологии рассматриваются такие структуры на многообразиях, что у любой пары точек можно найти одинаковые окрестности, тогда как в дифференциальной геометрии, вообще говоря, могут присутствовать локальные инварианты (такие как кривизна), которые могут различаться в точках. Например, симплектическая структура таких инвариантов не имеет, и наряду с симплектической геометрией рассматривается «симплектическая топология».

Математическая предметная классификация выделяет для дифференциальной геометрии раздел верхнего уровня 53, а дифференциальную топологию относит в качестве блока второго уровня 57Rxx в разделе «Многообразия и клеточные комплексы».