метод исследования структуры мелкокристаллических материалов с помощью дифракции рентгеновских лучей (См.
Дифракция рентгеновских лучей) (
метод поликристалла). Назван по имени П.
Дебая (См.
Дебай) и немецкого физика П.
Шеррера, предложивших этот
метод в 1916. Узкий параллельный пучок монохроматических рентгеновских лучей, падая на поликристаллический образец и отражаясь от кристалликов, из которых он состоит, даёт ряд коаксиальных, т. е. имеющих одну общую ось, дифракционных конусов (
рис. 1). Осью конусов служит направление первичного пучка рентгеновских лучей. Вершины их лежат внутри исследуемого объекта, а углы раствора определяются согласно Брэгга - Вульфа условию (См.
Брэгга - Вульфа условие)
: nλ = 2dsin
θ (здесь
n - целое положительное число,
λ - длина волны рентгеновских лучей,
d - расстояние между параллельными плоскостями узлов пространственной решётки кристалла,
θ - угол между отражающей плоскостью и падающим лучом). Угол раствора конуса равен учетверённому углу отражения
θ . Интенсивность и положение дифракционных конусов фиксируются на фотоплёнке или одним из ионизационных методов (
рис. 2). При попадании дифрагирующих лучей на фотоплёнку они оставляют след в виде ряда дифракционных линий, форма которых зависит от геометрии рентгеносъёмки: взаимного расположения образца, фотоплёнки и падающего пучка рентгеновских лучей. В некоторых камерах для съёмки рентгенограмм с поликристаллов фотоплёнка располагается по поверхности цилиндра, ось которого перпендикулярна падающему пучку рентгеновских лучей, а образец помещается на оси цилиндра. Схематическое расположение приборов при этом виде съёмки показано на
рис. 3, а рентгенограмма (т. н. дебаеграмма), получаемая таким способом, приведена на
рис. 4.
В других камерах плоская плёнка помещается перпендикулярно к падающему пучку рентгеновских лучей, так что луч, не испытывающий при прохождении через образец дифракции, попадает в центр плёнки. При таком способе съёмки фиксируется полное дебаевское кольцо, т. е. кривая пересечения дифракционного конуса с фотоплёнкой. Дебаеграммы такого вида обычно применяются для определения текстуры (преимущественной ориентировки кристаллитов).
Измерение углов раствора дифракционных конусов позволяет определить по условию Брэгга - Вульфа межплоскостные расстояния d. В некоторых случаях этих данных, в совокупности с измерением интенсивности лучей в каждом дифракционном конусе, достаточно для полного определения структуры кристаллической решётки.
Д. - Ш. м. особенно важен для решения различных технических задач; например, он позволяет исследовать структурные изменения. возникающие при различных обработках металлов и сплавов. В случае исследования пластически деформированных кристаллов этот метод позволяет определять наличие текстуры в образце, при термообработке - следить за фазовыми превращениями; Д. - Ш. м. также широко применяется в минералогии и химии для идентификации различных минералов и химических соединений.
В. И. Иверонова.
Рис. 4. Дебаеграммы алюминия (а и б), полученные соответственно на Kα- и Kβ-излучении меди.
Рис. 1. Образование коаксиальных дифракционных конусов: 1 - кристалл; 2 - падающее на кристалл монохроматическое рентгеновское излучение; 3 - дифрагирующие лучи; 4ϑ и 4ϑ' - углы раствора дифракционных конусов.
Рис. 2. Рентгенограмма графита, полученная по методу Дебая - Шеррера с помощью ионизационного спектрографа; использовалось монохроматическое Кα-излучение меди (длина волны λ = 1,54 Å). Цифрами обозначены кристаллографические индексы плоскостей отражения.
Рис. 3. Схема съемки рентгенограммы по методу Дебая - Шеррера: 1 - рентгеновская трубка; 2 - пучок монохроматического рентгеновского излучения; 3 - диафрагма (щель); 4 - кристалл; 5 - фотоплёнка; 6 - рентгенограмма; О - след, оставляемый лучами, проходящими кристалл насквозь.