Динамика машин и механизмов - определение. Что такое Динамика машин и механизмов
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Динамика машин и механизмов - определение

Йозеф и Цтирад Машин; Машин Йозеф; Машин, Цтирад; Машин Цтирад; Цтирад Машин; Цтирад и Йозеф Машин; Братья Машиновы
Найдено результатов: 6292
Динамика машин и механизмов      

раздел теории машин и механизмов, в котором изучается движение механизмов и машин с учётом действующих на них сил. Д. м. и м. решает следующие основные задачи: установление законов движения звеньев механизмов, регулирование движения звеньев, нахождение потерь на трение, определение реакций в кинематических парах, уравновешивание машин и механизмов.

Определение законов движения звеньев механизма по заданным характеристикам внешних сил решают с помощью дифференциальных уравнений движения механической системы или машинного агрегата, состоящего обычно из двигателя, передаточного механизма, рабочей машины и иногда управляющего устройства. Число уравнений равняется числу степеней свободы этой механической системы. В плоских механизмах с одной степенью свободы для удобства решения задачи все силы и массы приводят к одному звену или точке механизма, которые называются звеном приведения или точкой приведения. Условный момент, приложенный к звену приведения, называется моментом приведения. Момент приведения равен совокупности всех моментов и сил, приложенных к звеньям механизма. Условный момент инерции звена приведения называется приведённым моментом инерции. Кинетическая энергия звена приведения равна сумме кинетических энергий всех звеньев механизма. Аналогично определяют приведённые силу и массу в точке приведения (рис., а):

где Мп - приведённый момент; Jп - приведённый момент инерции; Рп - приведённая сила; mп - приведённая масса; M1, M2, P2, P3 - моменты и силы, приложенные к звеньям механизма; ω1, ω2 - угловые скорости звеньев; υB, υC - скорости точек В и С механизма; υS2 - скорость центра тяжести звена 2; υK - скорость точки К приложения силы P2; α2 - угол между векторами P2 и υK; α3 - угол между векторами P3 и υC. Уравнение движения для данного случая:

т. е, Мп в общем случае зависит от времени, положения, скорости.

Уравнения движения обычно являются нелинейными. Методов точного решения их не существует, поэтому пользуются приближёнными графическими, графо-аналитическими и численными методами интегрирования. Установить закон движения механической системы сложнее, если учитывать трение и зазоры в кинематических парах, упругость и переменность масс звеньев. Иногда, например при изучении быстротекущих процессов в машинах, некоторые внешние силы нельзя считать заданными, т.к. движение механизма может оказать обратное воздействие на характеристику этих сил. Например, в некоторых режимах с большими ускорениями нельзя принимать механическую характеристику электродвигателя как заданную зависимость момента на валу двигателя от угловой скорости, т.к. на этот момент существенное влияние могут оказать электромагнитные процессы в электродвигателе. В этом случае к дифференциальным уравнениям движения механической системы добавляют дифференциальное уравнение электромагнитных процессов в электродвигателе и решают их совместно.

Вопросы регулирования движения машинного агрегата и управления им рассматриваются в теории регулирования. Различают неустановившийся, переходный и установившийся режимы движения. При установившемся режиме скорости точек механизма являются периодическими функциями времени или положения или остаются постоянными. Регулирование установившегося движения сводится к обеспечению угловой скорости звена приведения, не превышающей допустимого отклонения от её значения. Для этого рассчитывают и устанавливают на машину специальную массу - Маховик. Необходимость регулирования неустановившегося движения возникает в том случае, когда, несмотря на непериодическое изменение внешних сил или масс, в механизме требуется поддерживать среднюю скорость звена приведения постоянной. Для этого на машину устанавливают специальные автоматические регуляторы. Основной задачей при этом является определение устойчивости движения системы машина - регулятор. Если же скорость какого-либо звена (или др. параметра) нужно изменять по заданному закону (программе), то в машину встраивают программное устройство. Примером может служить программное управление металлорежущими станками. Конкретная задача, рассматриваемая теорией регулирования, - отыскание оптимальных режимов движения машин (оптимальное управление). Например, определение движения с наибыстрейшим переходным режимом при ограниченном ускорении, т. е. оптимального по быстродействию, или движения с минимумом затрачиваемой в переходном режиме энергии, т. е. оптимального по потерям.

Нахождение непроизводительных потерь в машинах сводится к определению потерь на трение, которые являются основными и влияют на эффективность работы машин и механизмов. Степень использования энергии в машине оценивается механическим кпд.

Кинетостатический расчёт механизмов, выполняемый при известном законе движения механизма, производится определением реакций в кинематических парах от всех заданных внешних сил, а также сил инерции звеньев и сил трения в кинематических парах. Значения этих реакций входят в расчёты звеньев на прочность и необходимы для подбора подшипников и расчёта их смазки.

Уравновешивание машин и механизмов осуществляется рациональным подбором и размещением Противовесов, снижающих динамические давления в кинематических парах механизмов. На практике осуществляют уравновешиванием машины на фундаменте (предотвращение вибраций (См. Вибрация)) или уравновешиванием вращающихся масс - балансировкой (См. Балансировка). Инерционные силы в современных быстроходных машинах достигают больших значений. Переменные по величине и направлению силы инерции нарушают нормальную работу узлов машины, являются источником вибраций и шума, которые вредно воздействуют на обслуживающий персонал и нарушают нормальную работу др. механизмов и приборов. В вибрационных машинах (См. Вибрационная машина) рассчитывают условия создания интенсивных колебаний их исполнительных органов. Динамические исследования в машинах непосредственно связаны с расчётами на прочность и жёсткость элементов машин, которые проводятся с целью выбора размеров и конструктивных форм деталей. Методы таких расчётов обычно излагаются в учебных дисциплинах: сопротивление материалов, динамика сооружений, детали машин.

Динамические исследования проводят также для пространственных механизмов со многими степенями свободы. Системы подобного типа обладают большой универсальностью выполняемых операций.

Лит.: Кожешник Я., Динамика машин, пер. с чешск., М., 1961; Зиновьев В. А., Бессонов А. П., Основы динамики машинных агрегатов, М., 1964; Артоболевский И. И., Теория механизмов, 2 изд., М., 1967; Кожевников С. Н., Теория механизмов и машин, 3 изд., М., 1969.

И. И. Артоболевский, А. П. Бессонов.

Действие сил и моментов кривошипно-ползунного механизма (а) в звене приведения (б) и в точке приведения (в): 1 - кривошип; 2 - шатун: 3 - ползун; М - приведённый момент МП; А - неподвижная опора.

ДИНАМИКА МАШИН И МЕХАНИЗМОВ      
раздел машин и механизмов теории, в котором изучается движение тел, входящих в состав машин и механизмов, с учетом действующих в них сил.
Системная динамика         
  • Динамическая диаграмма «Вывод на рынок нового продукта»
НАПРАВЛЕНИЕ В ИЗУЧЕНИИ СЛОЖНЫХ СИСТЕМ
Динамика систем; Системодинамика
Системная динамика — направление в изучении сложных систем, исследующее их поведение во времени и в зависимости от структуры элементов системы и взаимодействия между ними. В том числе: причинно-следственных связей, петель обратных связей, задержек реакции, влияния среды и других. Особое внимание уделяется компьютерному моделированию таких систем.
Машин, Юрий Дмитриевич         
  • 20px
Машин Юрий Дмитриевич () — советский государственный деятель, председатель комитета по физической культуре и спорту при Совете Министров СССР.
Групповая динамика         
Групповая динамика — процессы взаимодействия членов малой группы, а также изучающее эти процессы научное направление; его основателем считается Курт Левин, который и ввел термин групповая динамика, описывающий позитивные и негативные процессы, происходящие в социальной группе.
ДИНАМИКА         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
и, мн. нет, ж.
1. Раздел механики, изучающий движение тел в зависимости от действующих на них сил.||Ср. КИНЕМАТИКА, КИНЕТИКА, СТАТИКА.
2. Состояние движения, ход развития какого-нибудь явления, процесса. Д. экономического развития стра-ны. Динамический - относящийся к динамике.
3. Движение, действие, развитие. Исследовать деятельность сердца в динамике.
динамика         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
ДИН'АМИКА, динамики, мн. нет, ·жен. (от ·греч. dynamikos - действующий).
1. Отдел механики, изучающий законы движения тел в зависимости от действующих на них сил (мех.).
2. Ход развития, изменения какого-нибудь явления под влиянием действующих на него сил; ант. статика
во 2 ·знач. (научн.). Динамика социального процесса.
3. перен. Обилие движения, действия (·книж. ). В пьесе много динамики.
динамика         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
жен., ·*греч. наука о движении тел, о силах двигающих. Механика делится на статику и динамику. Динамический, относящийся к динамике; основанный не на отвлеченном понятии о теле, о веществе, а на деятельных силах тела. Динамическое учение, в физике противоположно атоми(сти)ческому, отвергая образование тел из неделимых атомов и объясняя образование их взаимным противодействием и равновесием сил. Динамик, динамист муж. последователь динамической школы. Динамометр муж. снаряд для из мерения силы, силомер.
ДИНАМИКА         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
в музыке - различной степени силы звучания, громкости и их изменения. Обозначаются итальянскими терминами: пиано (piano, сокр. p) - тихо; форте (forte, сокр. f) - громко; крещендо (crescendo) - постепенно усиливая; диминуэндо (diminuendo) - постепенно затихая и др.
---
(от греч. dynamis - сила), раздел механики, в котором изучается движение тел под действием приложенных к ним сил. Основа динамики - Ньютона законы механики.
Динамика         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Динамика (значения)
I Дина́мика (от греч. dynamikós - сильный, от dýnamis - сила)

раздел механики (См. Механика), посвящённый изучению движения материальных тел под действием приложенных к ним сил. В основе Д. лежат три закона И. Ньютона (см. Ньютона законы механики), из которых как следствия получаются все уравнения и теоремы, необходимые для решения задач Д.

Согласно первому закону (закону инерции) материальная точка, на которую не действуют силы, находится в состоянии покоя или равномерного прямолинейного движения; изменить это состояние может только действие силы. Второй закон, являющийся основным законом Д., устанавливает, что при действии силы F материальная точка (или поступательно движущееся тело) с массой m получает ускорение w, определяемое равенством

mw = F. (1)

Третьим законом является закон о равенстве действия и противодействия (см. Действия и противодействия закон). Когда к телу приложено несколько сил, F в уравнении (1) означает их равнодействующую. Этот результат следует из закона независимости действия сил, согласно которому при действии на тело нескольких сил каждая из них сообщает телу такое же ускорение, какое она сообщила бы, если бы действовала одна.

В Д. рассматриваются два типа задач, решения которых для материальной точки (или поступательно движущегося тела) находятся с помощью уравнения (1). Задачи первого типа состоят в том, чтобы, зная движение тела, определить действующие на него силы. Классическим примером решения такой задачи является открытие Ньютоном закона всемирного тяготения: зная установленные И. Кеплером на основании обработки результатов наблюдений законы движения планет (см. Кеплера законы), Ньютон показал, что это движение происходит под действием силы, обратно пропорциональной квадрату расстояния между планетой и Солнцем. В технике такие задачи возникают при определении сил, с которыми движущиеся тела действуют на связи, т. е. др. тела, ограничивающие их движение (см. Связи механические), например при определении сил давления колёс на рельсы, а также при нахождении внутренних усилий в различных деталях машин и механизмов, когда законы движения этих машин (механизмов) известны.

Задачи второго типа, являющиеся в Д. основными, состоят в том, чтобы, зная действующие на тело силы, определить закон его движения. При решении этих задач необходимо ещё знать так называемые начальные условия, т. е. положение и скорость тела в момент начала его движения под действием заданных сил. Примеры таких задач: зная величину и направление скорости снаряда в момент его вылета из канала ствола (начальная скорость) и действующие на снаряд при его движении силу тяжести и силу сопротивления воздуха, найти закон движения снаряда, в частности его траекторию, горизонтальную дальность полёта, время движения до цели и др.; зная скорость автомобиля в момент начала торможения и силу торможения, найти время движения и путь до остановки; зная силу упругости рессор и вес кузова вагона, определить закон его колебаний, в частности частоту этих колебаний, и многие др.

Задачи Д. для твёрдого тела (при его непоступательном движении) и различных механических систем решаются с помощью уравнений, которые также получаются как следствия второго закона Д., применяемого к отдельным частицам системы или тела; при этом ещё учитывается равенство сил взаимодействия между этими частицами (третий закон Д.). В частности, таким путём для твёрдого тела, вращающегося вокруг неподвижной оси z, получается уравнение:

lzε = Mz,

где Iz - Момент инерции тела относительно оси вращения, ε - угловое ускорение тела, Mz - Вращающий момент, равный сумме моментов действующих сил относительно оси вращения. Это уравнение позволяет, зная закон вращения, т. е. зависимость ε от времени, найти вращающий момент (задача первого типа) или, зная вращающий момент и начальные условия, т. е. начальное положение тела и начальную угловую скорость, найти закон вращения (задача второго типа).

При изучении движения механических систем часто применяют так называемые общие теоремы Д., которые также могут быть получены как следствия 2-го и 3-го законов Д. К ним относятся теоремы о движении центра масс (или центра инерции) и об изменении количества движения (См. Количество движения), момента количества движения (См. Момент количества движения) и кинетической энергии системы. Иной путь решения задач Д. связан с использованием вместо 2-го закона Д. др. принципов механики (см. Д' Аламбера принцип (См. Д'Аламбера принцип), Д' Аламбера - Лагранжа принцип (См. Д'Аламбера - Лагранжа принцип), Вариационные принципы механики) и получаемых с их помощью уравнений движения, в частности Лагранжа уравнений (См. Лагранжа уравнения) механики.

Уравнение (1) и все следствия из него справедливы только при изучении движения по отношению к так называемой инерциальной системе отсчёта (См. Инерциальная система отсчёта), которой для движений внутри солнечной системы с высокой степенью точности является звёздная система (система отсчёта с началом в центре Солнца и осями, направленными на удалённые звёзды), а при решении большинства инженерных задач - система отсчёта, связанная с Землёй. При изучении движения по отношению к неинерциальным системам отсчёта, т. е. системам, связанным с ускоренно движущимися или вращающимися телами, уравнение движения можно также составлять в виде (1), если только к силе F прибавить так называемую переносную и Кориолиса силы (См. Кориолиса сила) инерции (см. Относительное движение). Такие задачи возникают при изучении влияния вращения Земли на движение тел по отношению к земной поверхности, а также при изучении движения различных приборов и устройств, установленных на движущихся объектах (судах, самолётах, ракетах и др.).

Помимо общих методов изучения движения тел под действием сил, в Д. рассматриваются специальные задачи: теория Гироскопа, теория механических колебаний (См. Колебания), теория устойчивости движения (См. Устойчивость движения), теория Удара, механика тела переменной массы (См. Механика тел переменной массы) и др. С помощью законов Д. изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов (см. Упругости теория, Пластичности теория, Гидроаэромеханика, Газовая динамика). Наконец, в результате применения методов Д. к изучению движения конкретных объектов возник ряд специальных дисциплин: Небесная механика, внешняя Баллистика, динамика паровоза, автомобиля, самолёта, Динамика ракет и т.п.

Методы Д., базирующейся на законах Ньютона и называются классической Д., описывают движения самых различных объектов (от молекул до небесных тел), происходящие со скоростями от долей мм/сек до десятков км/сек (скорости ракет и небесных тел), и имеют огромное значение для современного естествознания и техники. Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света; такие движения подчиняются др. законам (см. Квантовая механика, Относительности теория).

Лит. см. при ст. Механика.

С. М. Тарг.

II Дина́мика

в музыке, совокупность явлений, связанных с применением различных степеней силы звучания, громкости. Основные градации силы звучания: piano (в нотах сокращённо р) - тихо, слабо и forte (f) - громко, сильно. Производные от piano в сторону ослабления: pianissimo (рр) - очень тихо, piano-pianissimo (ppp) - чрезвычайно тихо и т.д. (до ррррр); от forte в сторону усиления: fortissimo (ff) - очень громко, forte-fortissimo (fff) - чрезвычайно громко и т.д. (до fffff). Применяются также обозначения mezzo piano (mp) - умеренно тихо и mezzo forte (mf) - умеренно громко. Все эти обозначения относятся к более или менее протяжённым музыкальным отрывкам, в которых выдерживается в общем единая и неизменная степень громкости звучания. Внутри таких отрывков нередко выделяются по громкости отдельные звуки, что обозначается терминами forzato, sforzato и др. (см. Акцент). В музыке широко используется и постепенное усиление или ослабление звучания. Усиление звучания обозначается термином crescendo (cresc, знак ), ослабление - термином decrescendo или diminuendo (decresc. или dim., знак ). Усиление звучания может вести к новой, более высокой степени выдерживаемой некоторое время громкости, может сменяться ослаблением звучания, образуя вместе с ним динамическую "волну". Для уточнения динамических обозначений к ним могут прибавляться слова meno (меньше, менее), quasi (как бы, подобно), molto (очень), росо (несколько), росо а росо (мало-помалу, постепенно) и т.п.

Градации динамики и их обозначения имеют в музыке лишь относительное значение; абсолютная величина громкости зависит от многих факторов, в том числе от типа инструмента, при ансамблевом исполнении - от количества партий и числа исполнителей на каждую партию, а также от акустических свойств помещения. Так, по абсолютному значению piano на трубе гораздо громче, чем forte вокалиста, громкость звучания piano у целого хора значительно выше, чем у отдельного его участника, и т.п. Абсолютные величины громкости измеряются в акустике и выражаются в фонах (см. Громкость звука).

Википедия

Братья Машин

Цтирад (11 августа 1930 — 13 августа 2011) и Йозеф (р. 8 марта 1932) Машин — чехословацкие граждане, братья, получившие известность как деятели антикоммунистического подполья в Чехословакии в начале 1950-х годов. Отношение к ним и их деятельности в современной Чехии крайне полярное: одни называют их преступниками и убийцами, другие — героями, не получившими заслуженного признания. Среднее образование получили в Среднечешской школе-интернате короля Йиржи из Подебрад, где также учился первый президент Чехии Вацлав Гавел и кинорежиссер Милош Форман.

Йозеф и Цтирад были сыновьями Йозефа Машина-старшего, чехословацкого партизана, сражавшегося против нацистов во время германской оккупации Чехословакии и погибшего в 1942 году; в 1945 году они получили вручённые их отцу посмертно медали за храбрость.

В начале 1950-х годов они вместе с несколькими единомышленниками организовали подпольную антикоммунистическую группу, боровшуюся с правительством Клемента Готвальда; её члены верили в скорое начало новой мировой войны и будущее, по их мнению, освобождение Восточной Европы от коммунизма. С 1951 по 1953 годы они совершили ряд атак и диверсий: в частности, в 1951 году несколько раз нападали на полицейские участки с целью похищения оружия, убив двух полицейских.

После этого они были арестованы, но Йозеф и помогавший братьям их дядя были вскоре освобождены, тогда как Цтирад был приговорён к двум годам работы на урановых шахтах. Во время его заключения Йозефу в 1952 году удалось совершить ограбление на сумму в 846 тысяч крон. После освобождения Цтирада братья планировали взорвать поезд, на котором ехал Клемент Готвальд, но не смогли осуществить задуманное.

В октябре 1953 года они вместе с тремя сообщниками (двое из которых затем погибли) совершили на угнанном автомобиле побег из Чехословакии в Западный Берлин через ГДР, при пересечении границы с ГДР убив одного и тяжело ранив двоих полицейских. Операция по их поимке стала одной из крупнейших неудач в истории Народной полиции ГДР.

Из Западного Берлина братья и оставшийся в живых Милан Паумер перебрались в США, где в скором времени разочаровались в вероятности новой войны и отошли от политики, занявшись бизнесом. В 1960 году Йозеф Машин переехал в Кёльн, ФРГ, о чём узнала чехословацкая разведка. Было предпринято несколько попыток поймать или убить его, после чего он вернулся в Калифорнию.

В 1995 году Апелляционный суд Чехии объявил, что уголовное преследование в отношении братьев Машинов прекращено в связи с истечением срока давности их преступлений, что вызвало резонанс и протесты в чешском обществе. Братья Машины предпочли не возвращаться в Чехию и остаться в США.