Дифракция рентгеновских лучей - определение. Что такое Дифракция рентгеновских лучей
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Дифракция рентгеновских лучей - определение

Дифракция Брэгга; Брэгговская дифракция; Условие Вульфа-Брэгга; Формула Брэгга — Вульфа; Закон Брэгга; Решетка Брэгга; Дифракция рентгеновских лучей; Дифракция Брегга; Брэгга — Вульфа условие; Брэгга – Вульфа условие; Условие Вульфа — Брэгга
  • Брэгговская дифракция
  • 250px
Найдено результатов: 32
ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ         
рассеяние рентгеновских лучей кристаллическими объектами, при котором в определенных направлениях появляются дифрагированные пучки - результат интерференции вторичного рентгеновского излучения, возникающего при взаимодействии первичного излучения с электронными оболочками атомов. Направление и интенсивность дифрагированных пучков связаны с атомной структурой объекта (см. Брэгга - Вульфа условие, Рентгеновский структурный анализ).
Дифракция рентгеновских лучей         

рассеяние рентгеновских лучей кристаллами (или молекулами жидкостей и газов), при котором из начального пучка лучей возникают вторичные отклонённые пучки той же длины волны, появившиеся в результате взаимодействия первичных рентгеновских лучей с электронами вещества; направление и интенсивность вторичных пучков зависят от строения рассеивающего объекта. Дифрагированные пучки составляют часть всего рассеянного веществом рентгеновского излучения. Наряду с рассеянием без изменения длины волны наблюдается рассеяние с изменением длины волны - так называемое комптоновское рассеяние (см. Комптона эффект). Явление Д. р. л., доказывающее их волновую природу, впервые было экспериментально обнаружено на кристаллах немецкими физиками М. Лауэ, В. Фридрихом и П. Книппингом в 1912.

Кристалл является естественной трёхмерной дифракционной решёткой (См. Дифракционная решётка) для рентгеновских лучей, т.к. расстояние между рассеивающими центрами (атомами) в кристалле одного порядка с длиной волны рентгеновских лучей (Дифракция рентгеновских лучей1Å=10-8 см). Д. р. л. на кристаллах можно рассматривать как избирательное отражение рентгеновских лучей от систем атомных плоскостей кристаллической решётки (см. Брэгга - Вульфа условие). Направление дифракционных максимумов удовлетворяет одновременно трём условиям:

a (cos α - cos α0) = Нλ,

b (cos β - cos β0) = Kλ,

с (cos γ - cos γ0) = Lλ.

Здесь а, b, с - периоды кристаллической решётки (См. Кристаллическая решётка) по трём её осям; α0, β0, γ0 - углы, образуемые падающим, а α, β, γ - рассеянным лучами с осями кристалла; λ - длина волны рентгеновских лучей, Н, К, L - целые числа. Эти уравнения называются уравнениями Лауэ. Дифракционную картину получают либо от неподвижного кристалла с помощью рентгеновского излучения со сплошным спектром (так называемая Лауэграмма; рис. 1), либо от вращающегося или колеблющегося кристалла (углы α0, β0 меняются, а γ0 остаётся постоянным), освещаемого монохроматическим рентгеновским излучением (λ - постоянно), либо от поликристалла, освещаемого монохроматическим излучением. В последнем случае, благодаря тому что отдельные кристаллы в образце ориентированы произвольно, меняются углы α0, β0, γ0.

Интенсивность дифрагированного луча зависит в первую очередь от так называемого структурного фактора, который определяется атомными факторами (См. Атомный фактор) атомов кристалла, их расположением внутри элементарной ячейки кристалла, а также характером тепловых колебаний атомов. Структурный фактор зависит от симметрии расположения атомов в элементарной ячейке. Интенсивность дифрагированного луча зависит также от размеров и формы объекта, от совершенства кристалла и прочего.

Д. р. л. от поликристаллических тел приводит к возникновению резко выраженных конусов вторичных лучей. Осью конуса является первичный луч, а угол раствора конуса равен 4ϑ (ϑ - угол между отражающей плоскостью и падающим лучом). Каждый конус соответствует определённому семейству кристаллических плоскостей. В создании конуса участвуют все кристаллики, семейство плоскостей которых расположено под углом ϑ к падающему лучу. Если кристаллики малы и их приходится очень большое количество на единицу объёма, то конус лучей будет сплошным. В случае текстуры, т. е. наличия предпочтительной ориентировки кристалликов, дифракционная картина (Рентгенограмма) будет состоять из неравномерно зачернённых колец (см. также Дебая - Шеррера метод).

Метод Д. р. л. на кристаллах дал возможность определять длину волны рентгеновских лучей, если известна структура кристаллической решётки, благодаря чему возникла Рентгеновская спектроскопия, сыгравшая важную роль при установлении строения атома. Наблюдения Д. р. л. известной длины волны на кристалле неизвестной структуры позволяют установить характер этой структуры (расположение ионов, атомов и молекул, составляющих кристалл), что послужило основой рентгеновского структурного анализа (См. Рентгеновский структурный анализ).

Д. р. л. наблюдается также при рассеянии их аморфными твёрдыми телами, жидкостями и газами. В этом случае на кривой зависимости интенсивности от угла рассеяния вокруг центрального пятна появляются широкие кольца типа гало (рис. 2). Положение этих колец (угол ϑ) определяется средним расстоянием между молекулами или расстояниями между атомами в молекуле. Из зависимости интенсивности от угла рассеяния можно определить распределение плотности вещества.

Д. р. л. можно наблюдать также на обычной оптической дифракционной решётке при скользящем падении (меньше угла полного отражения) рентгеновских лучей на решётку. С помощью этого метода можно непосредственно и с большой точностью измерять длины волн рентгеновских лучей.

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Боровский И. Б., Физические основы рентгеноспектральных исследований, М., 1956.

В. И. Иверонова.

Рис. 1. Лауэграмма берилла.

Рис. 2. Рентгенограмма воды.

ДИФРАКЦИЯ         
  • Дифракция от диска. Голубым показана геометрическая тень, в P пятно Пуассона
  • Закону Брэгга]] каждая точка (или ''отражение'') в этой дифракционной картине формируется конструктивной интерференцией рентгеновских лучей, проходящих через кристалл. Эти данные могут быть использованы для определения атомной структуры кристаллов.
ЯВЛЕНИЕ ОГИБАНИЯ ВОЛНАМИ ПРЕПЯТСТВИЙ, МЕНЬШИХ ЧЕМ ДЛИНА ВОЛНЫ
Дифракционные методы; Дифракция света; Дифракция волн; Дифракционный структурный анализ; Дифракция на щели; Диффракция
и, ж., физ.
Огибание волнами (световыми, звуковыми и др.) препятствий. Д. света. Д. частиц. Дифракционный - относящийся к дифракции.||Ср. АБЕРРАЦИЯ, ДИСПЕРСИЯ, РЕФРАКЦИЯ.
Дифракция         
  • Дифракция от диска. Голубым показана геометрическая тень, в P пятно Пуассона
  • Закону Брэгга]] каждая точка (или ''отражение'') в этой дифракционной картине формируется конструктивной интерференцией рентгеновских лучей, проходящих через кристалл. Эти данные могут быть использованы для определения атомной структуры кристаллов.
ЯВЛЕНИЕ ОГИБАНИЯ ВОЛНАМИ ПРЕПЯТСТВИЙ, МЕНЬШИХ ЧЕМ ДЛИНА ВОЛНЫ
Дифракционные методы; Дифракция света; Дифракция волн; Дифракционный структурный анализ; Дифракция на щели; Диффракция
(от лат. diffractus - разломанный)

волн, явления, наблюдаемые при прохождении волн мимо края препятствия, связанные с отклонением волн от прямолинейного распространения при взаимодействии с препятствием. Из-за Д. волны огибают препятствия, проникая в область геометрической тени. Именно Д. звуковых волн объясняется возможность слышать голос человека, находящегося за углом дома. Дифракцией радиоволн (См. Дифракция радиоволн) вокруг поверхности Земли объясняется приём радиосигналов в диапазоне длинных и средних радиоволн далеко за пределами прямой видимости излучающей антенны.

Д. волн - характерная особенность распространения волн независимо от их природы. Объяснить Д. в первом приближении можно, применив Гюйгенса - Френеля принцип. Согласно этому принципу, рассматривая распространение какой-либо волны, можно каждую точку среды, которой достигла эта волна, считать источником вторичных волн. Поэтому, поставив на пути волн экран с малым отверстием (диаметр порядка длины волны), получим в отверстии экрана источник вторичных волн, от которого распространяется сферическая волна, попадая и в область геометрической тени. Если имеется экран с двумя малыми отверстиями или щелями, дифрагирующие волны накладываются друг на друга и в результате интерференции (См. Интерференция) волн дают чередующееся в пространстве распределение максимумов и минимумов амплитуды результирующей волны с плавными переходами от одного к другому. С увеличением количества щелей максимумы становятся более узкими. При большом количестве равноотстоящих щелей (Дифракционная решётка) получают резко разделённые направления взаимного усиления волн.

Д. волн существенно зависит от соотношения между длиной волны λ и размером объекта, вызывающего Д. Наиболее отчётливо Д. обнаруживается в тех случаях, когда размер огибаемых препятствий соизмерим с длиной волны. Поэтому легко наблюдается Д. звуковых, сейсмических и радиоволн, для которых это условие обычно всегда выполняется (λ Дифракция от м до км), и гораздо труднее наблюдать без специальных устройств дифракцию света (См. Дифракция света) (λ Дифракция 400-750 нм). Эта же причина приводит к многим техническим трудностям при изучении волновых свойств др. объектов. Так, поскольку рентгеновские лучи имеют длину волны от сотен до 0,0001 А, дифракционную решётку с таким расстоянием между щелями изготовить невозможно, поэтому немецкий физик М. Лауэ для изучения дифракции рентгеновских лучей (См. Дифракция рентгеновских лучей) использовал в качестве дифракционной решётки кристалл, в котором атомы (ионы) расположены в правильном порядке.

Д. волн сыграла большую роль в изучении природы микрочастиц. Экспериментально было установлено, что при прохождении микрочастиц (например, электронов) через среду (газ, кристалл) наблюдается Д. Дифракция частиц является следствием того, что микрочастицы обладают двойственной природой (так называемым корпускулярно-волновым дуализмом (См. Корпускулярно-волновой дуализм)): в одних явлениях поведение микрочастиц может быть объяснено на основе представления о частицах, в других, как, например, в явлениях Д., на основе представления о волнах. Согласно квантовой механике (См. Квантовая механика), каждой частице соответствует так называемая волна де Бройля (См. Волны де Бройля), длина которой зависит от энергии частицы. Так, электрону с энергией 1 эв соответствует волна де Бройля длиной того же порядка, что и размер атома. Д. электронов и нейтронов широко пользуются для изучения строения вещества.

В. Н. Парыгин.

дифракция         
  • Дифракция от диска. Голубым показана геометрическая тень, в P пятно Пуассона
  • Закону Брэгга]] каждая точка (или ''отражение'') в этой дифракционной картине формируется конструктивной интерференцией рентгеновских лучей, проходящих через кристалл. Эти данные могут быть использованы для определения атомной структуры кристаллов.
ЯВЛЕНИЕ ОГИБАНИЯ ВОЛНАМИ ПРЕПЯТСТВИЙ, МЕНЬШИХ ЧЕМ ДЛИНА ВОЛНЫ
Дифракционные методы; Дифракция света; Дифракция волн; Дифракционный структурный анализ; Дифракция на щели; Диффракция
ДИФР'АКЦИЯ, дифракции, мн. нет, ·жен. (·лат. diffractio - разламывание) (оптика). Отклонение светового луча от прямолинейного распространения, с рассеиванием, при прохождении сквозь узкую щель или около тонкого предмета.
Дифракция света         
  • Дифракция от диска. Голубым показана геометрическая тень, в P пятно Пуассона
  • Закону Брэгга]] каждая точка (или ''отражение'') в этой дифракционной картине формируется конструктивной интерференцией рентгеновских лучей, проходящих через кристалл. Эти данные могут быть использованы для определения атомной структуры кристаллов.
ЯВЛЕНИЕ ОГИБАНИЯ ВОЛНАМИ ПРЕПЯТСТВИЙ, МЕНЬШИХ ЧЕМ ДЛИНА ВОЛНЫ
Дифракционные методы; Дифракция света; Дифракция волн; Дифракционный структурный анализ; Дифракция на щели; Диффракция

явления, наблюдающиеся при распространении света мимо резких краёв непрозрачных или прозрачных тел, сквозь узкие отверстия. При этом происходит нарушение прямолинейности распространения света, т. е. отклонение от законов геометрической оптики (См. Геометрическая оптика). Вследствие Д. с. при освещении непрозрачных экранов точечным источником света на границе тени, где, согласно законам геометрической оптики, должен был бы происходить скачкообразный переход от тени к свету, наблюдается ряд светлых и тёмных дифракционных полос (рис. 1). Поскольку дифракция свойственна всякому волновому движению, открытие Д. с. в 17 в. итальянским физиком и астрономом Ф. Гримальди и её объяснение в начале 19 в. французским физиком О. Френелем (См. Френель) явились одним из основных доказательств волновой природы света.

Приближённая теория Д. с. основана на применении Гюйгенса- Френеля принципа (См. Гюйгенса - Френеля принцип). Для качественного рассмотрения простейших случаев Д. с. может быть применено построение зон Френеля (См. Зоны Френеля). При прохождении света от точечного источника через небольшое круглое отверстие в непрозрачном экране или вокруг круглого непрозрачного экрана наблюдаются дифракционные полосы в виде концентрических окружностей. Если отверстие оставляет открытым чётное число зон, то в центре дифракционной картины получается тёмное пятнышко, при нечётном числе зон - светлое. В центре тени от круглого экрана, закрывающего не слишком большое число зон Френеля, получается светлое пятнышко.

Различают 2 случая Д. с. - дифракция сферической волны, при которой размер отверстия сравним с размером зоны Френеля, т. е.

где b - размер отверстия, z - расстояние точки наблюдения от экрана, λ - длина волны (дифракция Френеля), и Д. с. в параллельных лучах, при которой отверстие много меньше одной зоны Френеля, т. е.

(дифракция Фраунгофера). В последнем случае при падении параллельного пучка света на отверстие пучок становится расходящимся с углом расходимости φ Дифракция света λ/b (дифракционная расходимость).

Большое практическое значение имеет случай Д. с. на щели. При освещении щели параллельным пучком монохроматического света на экране получается ряд тёмных и светлых полос, быстро убывающих по интенсивности. Если свет падает перпендикулярно к плоскости щели, то полосы расположены симметрично относительно центральной полосы (рис. 2), а освещённость меняется вдоль экрана периодически с изменением φ, обращаясь в нуль при углах φ, для которых sin φ = mb (m = 1, 2, 3 ....). При промежуточных значениях освещённость достигает максимальных значений. Главный максимум имеет место при m = 0, при этом sin φ = 0, т. е. φ = 0. Следующие максимумы, значительно уступающие по величине главному, соответствуют значениям φ, определённым из условий: sin φ = 1,43 λ/b, 2,46 λ/b, 3,47 λ/b и т.д.

С уменьшением ширины щели центральная светлая полоса расширяется, а при данной ширине щели положение минимумов и максимумов зависит от λ, т. е. расстояние между полосами тем больше, чем больше λ. Поэтому в случае белого света имеет место совокупность соответствующих картин для разных цветов. При этом главный максимум будет общим для всех λ и представится в виде белой полоски, переходящей в цветные полосы с чередованием цветов от фиолетового к красному.

Если имеются 2 идентичные параллельные щели, то они дают одинаковые накладывающиеся друг на друга дифракционные картины, вследствие чего максимумы соответственно усиливаются, а кроме того, происходит взаимная интерференция волн от первой и второй щелей, значительно осложняющая картину. В результате минимумы будут на прежних местах, т.к. это те направления, по которым ни одна из щелей не посылает света. Кроме того, возможны направления, в которых свет, посылаемый двумя щелями, взаимно уничтожается. Т. о., прежние минимумы определяются условиями: b sin φ = λ, 2λ, 3λ, ..., добавочные минимумы d sin φ = λ/2, 3λ/2, 5λ/2, ... (d - размер щели b вместе с непрозрачным промежутком а), главные максимумы d sin φ = 0,λ, 2λ, 3λ, ..., т. е. между двумя главными максимумами располагается один добавочный минимум, а максимумы становятся более узкими, чем при одной щели. Увеличение числа щелей делает это явление ещё более отчётливым (см. Дифракционная решётка).

Д. с. играет существенную роль при рассеянии света в мутных средах, например на пылинках, капельках тумана и т.п. На Д. с. основано действие спектральных приборов (См. Спектральные приборы) с дифракционной решёткой (дифракционных спектрометров). Д. с. определяет предел разрешающей способности оптических приборов (телескопов, микроскопов и др.). Благодаря Д. с. изображение точечного источника (например, звезды в телескопе) имеет вид кружка с диаметром λflD, где D - диаметр объектива, а f - его фокусное расстояние. Расходимость излучения Лазеров также определяется Д. с. Для уменьшения расходимости лазерного пучка его преобразуют в более широкий пучок при помощи телескопа, и тогда расходимость излучения определяется диаметром D объектива по формуле φ Дифракция света λ/D.

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Горелик Г. С., Колебания и волны, 2 изд., М., 1959, гл. 9.

Рис. 2. Дифракция Фраунгофера на щели.

Рис. 1. Тень винта, окружённая дифракционными полосами.

ДИФРАКЦИЯ         
  • Дифракция от диска. Голубым показана геометрическая тень, в P пятно Пуассона
  • Закону Брэгга]] каждая точка (или ''отражение'') в этой дифракционной картине формируется конструктивной интерференцией рентгеновских лучей, проходящих через кристалл. Эти данные могут быть использованы для определения атомной структуры кристаллов.
ЯВЛЕНИЕ ОГИБАНИЯ ВОЛНАМИ ПРЕПЯТСТВИЙ, МЕНЬШИХ ЧЕМ ДЛИНА ВОЛНЫ
Дифракционные методы; Дифракция света; Дифракция волн; Дифракционный структурный анализ; Дифракция на щели; Диффракция
В физике: отклонение, рассеяние.
Д. волн. Д. лучей. Д. частиц.
ДИФРАКЦИЯ ВОЛН         
  • Дифракция от диска. Голубым показана геометрическая тень, в P пятно Пуассона
  • Закону Брэгга]] каждая точка (или ''отражение'') в этой дифракционной картине формируется конструктивной интерференцией рентгеновских лучей, проходящих через кристалл. Эти данные могут быть использованы для определения атомной структуры кристаллов.
ЯВЛЕНИЕ ОГИБАНИЯ ВОЛНАМИ ПРЕПЯТСТВИЙ, МЕНЬШИХ ЧЕМ ДЛИНА ВОЛНЫ
Дифракционные методы; Дифракция света; Дифракция волн; Дифракционный структурный анализ; Дифракция на щели; Диффракция
(от лат. diffractus - разломанный), огибание волнами различных препятствий. Дифракция волн свойственна всякому волновому движению; имеет место, если размеры препятствия порядка длины волны или больше. Напр., дифракция света наблюдается при распространении света вблизи краев непрозрачных тел, сквозь узкие отверстия, щели и т. д.; дифракционная картина (чередование световых максимумов и минимумов) - результат интерференции световых волн.
дифракция         
  • Дифракция от диска. Голубым показана геометрическая тень, в P пятно Пуассона
  • Закону Брэгга]] каждая точка (или ''отражение'') в этой дифракционной картине формируется конструктивной интерференцией рентгеновских лучей, проходящих через кристалл. Эти данные могут быть использованы для определения атомной структуры кристаллов.
ЯВЛЕНИЕ ОГИБАНИЯ ВОЛНАМИ ПРЕПЯТСТВИЙ, МЕНЬШИХ ЧЕМ ДЛИНА ВОЛНЫ
Дифракционные методы; Дифракция света; Дифракция волн; Дифракционный структурный анализ; Дифракция на щели; Диффракция
ж.
Огибание препятствий волнами (световыми, звуковыми и т.п.) (в физике).
Дифракция         
  • Дифракция от диска. Голубым показана геометрическая тень, в P пятно Пуассона
  • Закону Брэгга]] каждая точка (или ''отражение'') в этой дифракционной картине формируется конструктивной интерференцией рентгеновских лучей, проходящих через кристалл. Эти данные могут быть использованы для определения атомной структуры кристаллов.
ЯВЛЕНИЕ ОГИБАНИЯ ВОЛНАМИ ПРЕПЯТСТВИЙ, МЕНЬШИХ ЧЕМ ДЛИНА ВОЛНЫ
Дифракционные методы; Дифракция света; Дифракция волн; Дифракционный структурный анализ; Дифракция на щели; Диффракция
Дифра́кция во́лн ( — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

Википедия

Условие Брэгга — Вульфа

Условие Брэгга — Вульфа определяет направление максимумов дифракции упруго рассеянного на кристалле рентгеновского излучения. Выведено в 1913 независимо У. Л. Брэггом и Г. В. Вульфом. Имеет вид:

2 d sin θ = n λ {\displaystyle \quad 2d\sin \theta =n\lambda }

где d — межплоскостное расстояние, θ — угол скольжения (брэгговский угол), n — порядок дифракционного максимума, λ — длина волны.

Брэгговская дифракция может наблюдаться не только для электромагнитных волн, но и для волн материи (волновых функций). В частности, экспериментально это было впервые продемонстрировано для нейтронов в 1936 году, а позднее также для отдельных атомов, конденсата Бозе — Эйнштейна, электронов, двухатомных и многоатомных молекул.

Что такое ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ - определение