Дробно-линейная функция - определение. Что такое Дробно-линейная функция
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Дробно-линейная функция - определение

Дробно-линейные преобразования; Дробнолинейное преобразование; Группа Мебиуса
  • Равнобочная гипербола]] — простейший пример дробно-линейной функции
  • Равнобочная гипербола]] как вещественная дробно-линейная функция <math>\frac{2x - 1}{x + 2}</math> с асимптотами <math>x = -2/1 = 2</math> и <math>y = 2/1 = 2</math>, <math>ad - bc = 5 > 0</math>
  • Гиперболический параболоид
Найдено результатов: 543
ДРОБНО-ЛИНЕЙНАЯ ФУНКЦИЯ         
частное двух линейных функций, т. е. функция вида y = (ах + b)/(сх + d). Если ad - bc № 0 и с № 0, график дробно-линейной функции - равнобочная гипербола.
Дробно-линейная функция         

функция вида

т. е. частное двух линейных функций. Д.-л. ф. - простейшая среди рациональных функций (См. Рациональная функция). При ad - bc = 0 она сводится к тождественной постоянной; если ad - bc ≠ 0, но с = 0, то Д.-л. ф. сводится к целой линейной функции у = αх + β. Т. о., интерес представляет лишь случай, когда ad - bc ≠ 0 и с ≠ 0; графиком Д.-л. ф., когда х принимает действительные значения, является равнобочная Гипербола.

Если х принимает произвольные комплексные значения (а, b, с и d - фиксированные комплексные числа), то Д.-л. ф. осуществляет взаимно однозначное и Конформное отображение комплексной плоскости (пополненной точкой ∞) на себя, называемое дробно-линейным отображением (это единственная аналитическая функция, обладающая указанным свойством). Д.-л. ф. характеризуется также тем, что она переводит прямые и окружности, лежащие в комплексной плоскости, снова в прямые и окружности. Всякое конформное отображение внутренности круга на себя осуществляется при помощи Д.-л. ф. Двойное отношение четырёх точек

является инвариантом Д.-л. ф. Иными словами, если Д.-л. ф. переводит x1 в y1, x2 в y2, x3 в у3 и x4 в y4, то

Лит.: Маркушевич А. И., Краткий курс теории аналитических функций, 3 изд., М., 1966; Привалов И. И., Введение в теорию функций комплексного переменного, 11 изд., М., 1967.

С. Б. Стечкин.

Дробно-линейная функция         
Дро́бно-лине́йная фу́нкция — это числовая функция, которая может быть представлена в виде дроби, числителем и знаменателем которой являются линейные функции.
Рациональное выражение         
  • Пример рациональной функции от одной переменной: <math>f(x) = \frac{x^2-3x-2}{x^2-4}</math>
  • Пример рациональной функции от двух переменных
ЧИСЛОВАЯ ФУНКЦИЯ, КОТОРАЯ МОЖЕТ БЫТЬ ПРЕДСТАВЛЕНА В ВИДЕ ДРОБИ, ЧИСЛИТЕЛЕМ И ЗНАМЕНАТЕЛЕМ КОТОРОЙ ЯВЛЯЮТСЯ МНОГОЧЛЕНЫ
Рациональное выражение; Рациональная дробь; Дробно-рациональная функция; Рациональные функции; Рациональные выражения

алгебраическое выражение, не содержащее радикалов, например a2 + b, х/(у - z3). Если входящие в Р. в. буквы считать переменными, то Р. в. задаёт рациональную функцию (См. Рациональная функция) от этих переменных.

РАЦИОНАЛЬНАЯ ФУНКЦИЯ         
  • Пример рациональной функции от одной переменной: <math>f(x) = \frac{x^2-3x-2}{x^2-4}</math>
  • Пример рациональной функции от двух переменных
ЧИСЛОВАЯ ФУНКЦИЯ, КОТОРАЯ МОЖЕТ БЫТЬ ПРЕДСТАВЛЕНА В ВИДЕ ДРОБИ, ЧИСЛИТЕЛЕМ И ЗНАМЕНАТЕЛЕМ КОТОРОЙ ЯВЛЯЮТСЯ МНОГОЧЛЕНЫ
Рациональное выражение; Рациональная дробь; Дробно-рациональная функция; Рациональные функции; Рациональные выражения
функция, получающаяся в результате конечного числа арифметических операций (сложения, умножения и деления) над переменным x и произвольными числами; имеет вид: R(x) = P(x)Q(x), где P(x) и Q(x) - многочлены от x.
РАЦИОНАЛЬНОЕ ВЫРАЖЕНИЕ         
  • Пример рациональной функции от одной переменной: <math>f(x) = \frac{x^2-3x-2}{x^2-4}</math>
  • Пример рациональной функции от двух переменных
ЧИСЛОВАЯ ФУНКЦИЯ, КОТОРАЯ МОЖЕТ БЫТЬ ПРЕДСТАВЛЕНА В ВИДЕ ДРОБИ, ЧИСЛИТЕЛЕМ И ЗНАМЕНАТЕЛЕМ КОТОРОЙ ЯВЛЯЮТСЯ МНОГОЧЛЕНЫ
Рациональное выражение; Рациональная дробь; Дробно-рациональная функция; Рациональные функции; Рациональные выражения
алгебраическое выражение, не содержащее радикалов и включающее только действия сложения, вычитания, умножения и деления. Напр., a2 + b, x/(y - z2).
Рациональная функция         
  • Пример рациональной функции от одной переменной: <math>f(x) = \frac{x^2-3x-2}{x^2-4}</math>
  • Пример рациональной функции от двух переменных
ЧИСЛОВАЯ ФУНКЦИЯ, КОТОРАЯ МОЖЕТ БЫТЬ ПРЕДСТАВЛЕНА В ВИДЕ ДРОБИ, ЧИСЛИТЕЛЕМ И ЗНАМЕНАТЕЛЕМ КОТОРОЙ ЯВЛЯЮТСЯ МНОГОЧЛЕНЫ
Рациональное выражение; Рациональная дробь; Дробно-рациональная функция; Рациональные функции; Рациональные выражения
Рациона́льная фу́нкция, или дро́бно-рациона́льная фу́нкция, или рациона́льная дробь — это числовая функция, которая может быть представлена в виде дроби, числителем и знаменателем которой являются многочлены. К этому виду может быть приведено любое рациональное выражение, то есть алгебраическое выражение, без радикалов.
Рациональная функция         
  • Пример рациональной функции от одной переменной: <math>f(x) = \frac{x^2-3x-2}{x^2-4}</math>
  • Пример рациональной функции от двух переменных
ЧИСЛОВАЯ ФУНКЦИЯ, КОТОРАЯ МОЖЕТ БЫТЬ ПРЕДСТАВЛЕНА В ВИДЕ ДРОБИ, ЧИСЛИТЕЛЕМ И ЗНАМЕНАТЕЛЕМ КОТОРОЙ ЯВЛЯЮТСЯ МНОГОЧЛЕНЫ
Рациональное выражение; Рациональная дробь; Дробно-рациональная функция; Рациональные функции; Рациональные выражения

функция, получающаяся в результате конечного числа арифметических операций (сложения, умножения и деления) над переменным х и произвольными числами. Р. ф. имеет вид:

, (1)

где a0, a1, ..., an и b0, b1, ..., bm (a0 ≠ 0, b0(0)- постоянные, a n и m - неотрицательные целые числа. Р. ф. определена и непрерывна для всех значений х, кроме тех, которые являются корнями (См. Корень) знаменателя Q (x). Если ξ - корень кратности k знаменателя Q (x) и одновременно корень кратности r (r k) числителя Р (х), то R (x) имеет в точке ξ устранимый разрыв; если же r < k, то R (x) имеет в точке ξ бесконечный разрыв (полюс). Многочлен является частным случаем Р. ф. (при m = 0), поэтому многочлены иногда называются целыми Р. ф.; всякая Р. ф. есть отношение двух многочленов. Др. примером Р. ф. может служить Дробно-линейная функция.

Если в формуле (1) n < m (m > 0), то Р. ф. называется правильной; если же n m, то R (x) может быть представлена в виде суммы многочлена M (x) степени n - m и правильной Р. ф. R1(x) = :

R (x) = М (х) + R1(x),

многочлены М (х) и P1(x) (степень последнего меньше m) однозначно определяются из соотношения

Р (х) = M (x) Q (x) + P1(x)

(формула деления многочлена с остатком).

Из определения Р. ф. следует, что функции, получаемые в результате конечного числа арифметических операций над Р. ф. и произвольными числами, снова являются Р. ф. В частности, Р. ф. от Р. ф. есть вновь Р. ф. Во всех точках, в которых она определена, Р. ф. дифференцируема, и её производная

также является Р. ф. Интеграл от Р. ф. сводится по предыдущему к сумме интеграла от многочлена и интеграла от правильной Р. ф. Интеграл от многочлена является многочленом и его вычисление не представляет труда. Для вычисления второго интеграла пользуются формулой разложения правильной Р. ф. R1(x) на простейшие дроби:

где x1, ..., xs - различные корни многочлена Q (x) соответственно кратностей k1, ..., ks (k1 + ... + ks = m), a Aj(i) - постоянные коэффициенты. Разложение Р. ф. на простейшие дроби (2) определяется однозначно. Если коэффициенты многочленов P1(x) и Q (x) - действительные числа, то комплексные корни знаменателя Q (x) (в случае их существования) распадаются на пары сопряжённых, и соответствующие каждой такой паре простейшие дроби в разложении (2) могут быть объединены в вещественные простейшие дроби:

где трёхчлен x2 + px + q имеет комплексно-сопряжённые корни (4q > p2).

Для определения коэффициентов Aj(i), Bj и Dj можно воспользоваться неопределенных коэффициентов методом (См. Неопределённых коэффициентов метод). Интегралы от простейших дробей

и

не являются Р. ф

,

а интегралы от простейших дробей

и

при k > 1 являются: первый - Р. ф., а второй - суммой Р. ф. и интеграла такого же вида, как при k = 1. Т. о., интеграл от любой Р. ф. (не являющейся многочленом) представляется в виде суммы Р. ф., арктангенсов и логарифмических функций. М. В. Остроградский дал алгебраический метод определения рациональной части интеграла от Р. ф., не требующий ни разложения Р. ф. на простейшие дроби, ни интегрирования (см. Остроградского метод).

Р. ф. являются весьма важным классом элементарных функций (См. Элементарные функции). Рассматриваются также Р. ф. нескольких переменных; они получаются в результате конечного числа арифметических операций над их аргументами и произвольными числами. Так,

даёт пример Р. ф. двух переменных u и υ.

В середине 20 в. Р. ф. нашли широкое применение в вопросах приближения функций (см. Приближение и интерполирование функций).

ЛИНЕЙНАЯ ФУНКЦИЯ         
  • Примеры линейных функций.
МНОГОЧЛЕН СТЕПЕНИ НЕ ВЫШЕ ЧЕМ ОДИН
Нелинейная функция; Нелинейные функции; Нелинейное уравнение; Аффинная функция; Нелинейные уравнения
простейшая функция, изображаемая на графике прямой линией (рисунок). Выражается формулой y?kx+b, где k - тангенс угла ?, под которым прямая пересекает ось абсцисс.
Линейная функция         
  • Примеры линейных функций.
МНОГОЧЛЕН СТЕПЕНИ НЕ ВЫШЕ ЧЕМ ОДИН
Нелинейная функция; Нелинейные функции; Нелинейное уравнение; Аффинная функция; Нелинейные уравнения

функция вида у = kx + b. Основное свойство Л. ф.: приращение функции пропорционально приращению аргумента. Графически Л. ф. изображается прямой линией. При равных масштабах на осях коэффициент k; (угловой коэффициент) равен тангенсу угла, образованного прямой с осью Ox ( k = tg φ, см. рис.), а b - отрезку, отсекаемому прямой на оси Оу. При b = 0 Л. ф. называется однородной; её график изображает пропорциональную зависимость: у = kx. Л. ф. широко применяется в физике и технике для представления (нередко - приближённо) зависимостей между различными величинами. Рассматривают также Л. ф. многих переменных; однородные Л. ф. многих переменных называют линейными формами (См. Линейная форма). Если и аргумент и функция суть векторы, то однородными Л. ф. являются линейные преобразования (См. Линейное преобразование).

Рис. к ст. Линейная функция.

Википедия

Дробно-линейная функция

Дро́бно-лине́йная фу́нкция — это числовая функция, которая может быть представлена в виде дроби, числителем и знаменателем которой являются линейные функции.

Дробно-линейная функция, отображающая в общем случае многомерное числовое пространство в одномерное числовое, представляет собой важный частный случай:

  • при n = 1 {\displaystyle n=1} как в вещественном, так и комплексном пространстве — рациональной функции, отображающей в общем случае одномерное числовое пространство само в себя с помощью многочленов одной переменной произвольной степени;
  • при n = 1 {\displaystyle n=1} в комплексном пространстве — дробно-линейного преобразования, отображающего в общем случае многомерное комплексное пространство само в себя;
  • при n = 1 {\displaystyle n=1} в комплексном и при n = 2 {\displaystyle n=2} в вещественном пространстве, инвертируя относительно окружностей, — преобразования Мёбиуса.
Что такое ДРОБНО-ЛИНЕЙНАЯ ФУНКЦИЯ - определение