Ежегодники астрономические - определение. Что такое Ежегодники астрономические
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Ежегодники астрономические - определение

Эфемериды, в астрономии; Астрономические ежегодники; Эфимерис; Астрономические таблицы
Найдено результатов: 50
Ежегодники астрономические      

сборники астрономических таблиц, содержащие главным образом координаты небесных тел (Солнца, Луны, планет, спутников, звёзд и др.), составляемые на каждый календарный год. Используются при научных и научно-технических, астрономических, геодезических, картографических, геофизических и др. работах, при расчёте траекторий и изучении движения искусственных спутников и космических зондов, а также для решения задач навигации на море, в воздухе и космическом пространстве. Е. а. содержат также таблицы солнечных и лунных затмений. В основе Е. а. лежат математической теории движения тел Солнечной системы, разработанные методами небесной механики (См. Небесная механика). Из зарубежных Е. а. наиболее известны "Connaissance des temps" (P., с 1759), "Astronomical Ephemeris" (L., с 1766; с 1960 издаётся совместно английским и американским Бюро эфемерид) и др. В России первый Е. а. был издан в 1814 под названием "Морской месяцеслов" и предназначался главным образом для обслуживания морского флота; издание просуществовало до 1856. С 1911 составление национальных астрономических ежегодников ведётся на началах кооперации между научными учреждениями различных стран. В СССР Институт теоретической астрономии АН СССР издаёт: "Астрономический ежегодник СССР" (с 1922), "Морской астрономический ежегодник" (с 1929), "Авиационный астрономический ежегодник" (с 1936), "Эфемериды малых планет" (с 1947). "Астрономический ежегодник СССР" является одним из наиболее полных среди национальных Е. а. и поэтому широко используется за рубежом. Научно-популярные Е. а. содержат информацию, представляющую интерес для широкого круга астрономов-любителей. В некоторых из них публикуются статьи обзорного характера. Старейшим и наиболее полным из таких Е. а. является "Астрономический календарь", основанный в 1895 Нижегородским кружком любителей физики и астрономии; ныне (с 1952) издаётся в Москве Всесоюзным астрономо-геодезическим обществом.

Г. А. Чеботарев.

ЕЖЕГОДНИКИ АСТРОНОМИЧЕСКИЕ      
сборники астрономических таблиц, подразделяющиеся на основные, морские, авиационные и др.; содержат главным образом координаты небесных тел на определенные даты очередного календарного года.
ЗНАКИ АСТРОНОМИЧЕСКИЕ         
  • 13 Egeria
  • 16 Psyche
  • 19 Fortuna
  • 26 Proserpina
  • 29 Amphitrite
  • Juno
  • 24px
  • 5 Astraea (alternate symbol)
  • 25px
  • 25px
  • 25px
  • 24px
  • 25px
  • 25px
  • Ceres
  • 24px
  • Земля
  • 25px
  • 25px
  • 24px
  • 24px
  • 25px
  • 25px
  • Земля (альтернативный символ)
  • 25px
  • 24px
  • 24px
  • 24px
  • 25px
  • Juno
  • Юпитер
  • 25px
  • 24px
  • 25px
  • 25px
  • Марс
  • 18 Melpomene
  • Меркурий
  • First quarter moon
  • Last quarter Moon
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • Нептун
  • Нептун
  • 25px
  • Pallas
  • 24px
  • 25px
  • Pluto
  • 25px
  • 24px
  • 25px
  • Сатурн
  • 25px
  • 25px
  • 17 Thetis
  • Уран (астрологический символ)
  • Уран
  • Венера
  • 25px
  • Vesta
  • Vesta
  • 24px
  • 25px
ИСПОЛЬЗОВАНИЯ
Знаки астрономические; Астрономические знаки; Астрологические символы; Знаки планет; Символы планет; Астрономический символ
условные обозначения Солнца, Луны, планет и других небесных тел, а также зодиакальных созвездий, фаз Луны и пр., введенные еще в Др. Греции и применяющиеся в современной астрономической литературе и календарях.
АСТРОНОМИЧЕСКИЕ ЗНАКИ         
  • 13 Egeria
  • 16 Psyche
  • 19 Fortuna
  • 26 Proserpina
  • 29 Amphitrite
  • Juno
  • 24px
  • 5 Astraea (alternate symbol)
  • 25px
  • 25px
  • 25px
  • 24px
  • 25px
  • 25px
  • Ceres
  • 24px
  • Земля
  • 25px
  • 25px
  • 24px
  • 24px
  • 25px
  • 25px
  • Земля (альтернативный символ)
  • 25px
  • 24px
  • 24px
  • 24px
  • 25px
  • Juno
  • Юпитер
  • 25px
  • 24px
  • 25px
  • 25px
  • Марс
  • 18 Melpomene
  • Меркурий
  • First quarter moon
  • Last quarter Moon
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • Нептун
  • Нептун
  • 25px
  • Pallas
  • 24px
  • 25px
  • Pluto
  • 25px
  • 24px
  • 25px
  • Сатурн
  • 25px
  • 25px
  • 17 Thetis
  • Уран (астрологический символ)
  • Уран
  • Венера
  • 25px
  • Vesta
  • Vesta
  • 24px
  • 25px
ИСПОЛЬЗОВАНИЯ
Знаки астрономические; Астрономические знаки; Астрологические символы; Знаки планет; Символы планет; Астрономический символ
см. Знаки астрономические.
Знаки астрономические         
  • 13 Egeria
  • 16 Psyche
  • 19 Fortuna
  • 26 Proserpina
  • 29 Amphitrite
  • Juno
  • 24px
  • 5 Astraea (alternate symbol)
  • 25px
  • 25px
  • 25px
  • 24px
  • 25px
  • 25px
  • Ceres
  • 24px
  • Земля
  • 25px
  • 25px
  • 24px
  • 24px
  • 25px
  • 25px
  • Земля (альтернативный символ)
  • 25px
  • 24px
  • 24px
  • 24px
  • 25px
  • Juno
  • Юпитер
  • 25px
  • 24px
  • 25px
  • 25px
  • Марс
  • 18 Melpomene
  • Меркурий
  • First quarter moon
  • Last quarter Moon
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • Нептун
  • Нептун
  • 25px
  • Pallas
  • 24px
  • 25px
  • Pluto
  • 25px
  • 24px
  • 25px
  • Сатурн
  • 25px
  • 25px
  • 17 Thetis
  • Уран (астрологический символ)
  • Уран
  • Венера
  • 25px
  • Vesta
  • Vesta
  • 24px
  • 25px
ИСПОЛЬЗОВАНИЯ
Знаки астрономические; Астрономические знаки; Астрологические символы; Знаки планет; Символы планет; Астрономический символ

условные обозначения Солнца, Луны, планет и др. небесных тел, а также зодиакальных созвездий, планетных конфигураций, фаз Луны и пр., применяемые в астрономической литературе и календарях. Некоторые З. а. используются для обозначения дней недели, часов.

Большинство З. а. возникло в глубокой древности и представляет собой схематические изображения небесных тел или символических фигур созвездий.

Знаки небесных светил и дней недели.

Знаки зодиака и месяцев.

Знаки лунных фаз.

Знаки аспектов (взаимного расположения светил).

Астрономические символы         
  • 13 Egeria
  • 16 Psyche
  • 19 Fortuna
  • 26 Proserpina
  • 29 Amphitrite
  • Juno
  • 24px
  • 5 Astraea (alternate symbol)
  • 25px
  • 25px
  • 25px
  • 24px
  • 25px
  • 25px
  • Ceres
  • 24px
  • Земля
  • 25px
  • 25px
  • 24px
  • 24px
  • 25px
  • 25px
  • Земля (альтернативный символ)
  • 25px
  • 24px
  • 24px
  • 24px
  • 25px
  • Juno
  • Юпитер
  • 25px
  • 24px
  • 25px
  • 25px
  • Марс
  • 18 Melpomene
  • Меркурий
  • First quarter moon
  • Last quarter Moon
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • Нептун
  • Нептун
  • 25px
  • Pallas
  • 24px
  • 25px
  • Pluto
  • 25px
  • 24px
  • 25px
  • Сатурн
  • 25px
  • 25px
  • 17 Thetis
  • Уран (астрологический символ)
  • Уран
  • Венера
  • 25px
  • Vesta
  • Vesta
  • 24px
  • 25px
ИСПОЛЬЗОВАНИЯ
Знаки астрономические; Астрономические знаки; Астрологические символы; Знаки планет; Символы планет; Астрономический символ
Астрономи́ческие си́мволы используются для обозначения различных небесных тел, наблюдаемых явлений и теоретических абстракций. Эти символы когда-то широко использовались профессиональными астрономами, астрономами-любителями, алхимиками и астрологами.
Астрономический бинокль         
  • Призмы Порро
  • Стационарный морской бинокуляр, аналогичный стационарному астрономическому бинокуляру
Астрономи́ческий бино́кль (бинокуля́р) — бинокль, предназначенный для наблюдения астрономических объектов: Луны, планет и их спутников, звёзд и их скоплений, туманностей, галактик и т. д.
Астрономические инструменты и приборы         
  • [[Астролябия]]
  • [[Квадрант]]

аппаратура для выполнения астрономических наблюдений и их обработки. А. и. и п. можно подразделить на наблюдательные инструменты (телескопы), светоприёмную и анализирующую аппаратуру, вспомогательные приборы для наблюдений, приборы времени, лабораторные приборы, вспомогательные счетно-решающие машины и демонстрационные приборы.

Оптические телескопы служат для собирания света исследуемых небесных светил и построения их изображения. По оптическим схемам они делятся на зеркальные системы - Рефлекторы (или катоптрические системы), линзовые - Рефракторы (или диоптрические системы) и смешанные зеркально-линзовые (катодиоптрические) системы, к которым относятся Шмидта телескоп, Максутова телескоп и др. По назначению телескопы разделяются на: инструменты для выполнения широкого круга астрофизических исследований звёзд, туманностей, галактик, а также планет и Луны - в основном крупные рефлекторы, оснащенные кассетами, спектрографами, электрофотометрами; инструменты для одновременного фотографирования больших участков неба (размером до 30x30°) - широкоугольные телескопы Максутова или Шмидта, а также широкоугольные Астрографы типа фотографических рефракторов; астрометрические инструменты для высокоточных измерений координат небесных объектов и моментов времени прохождения их через меридиан; солнечные телескопы для изучения физических процессов, происходящих на Солнце; метеорные камеры, камеры для фотографирования искусственных спутников Земли, камеры для регистрации северных сияний и другие специальные телескопы. Астрономические исследования в диапазоне радиочастот ведутся с помощью радиотелескопов. Крупнейший в мире оптический телескоп середины 20 в. - 5 рефлектор Маунт-Паломарской обсерватории (США). В 1968 в СССР на Сев. Кавказе начался монтаж рефлектора с зеркалом диаметром 6 м.

Для определений координат небесных объектов и ведения службы времени используют меридианные круги (См. Меридианный круг), пассажные инструменты (См. Пассажный инструмент), вертикальные круги (См. Вертикальный круг), Зенит-телескопы, призменные астролябии (См. Призменная астролябия) и другие инструменты. В астрогеодезических экспедициях применяют переносные инструменты типа пассажного инструмента, зенит-телескопы, Теодолиты. Крупные солнечные телескопы, обычно устанавливаемые неподвижно, делятся на башенные телескопы (См. Башенный телескоп) и горизонтальные телескопы (См. Горизонтальный телескоп), свет направляется в них одним (Сидеростат, Гелиостат) или двумя (Целостат) подвижными плоскими зеркалами. Для наблюдений солнечной короны, хромосферы, фотосферы применяют внезатменный Коронограф, хромосферные телескопы (См. Хромосферный телескоп) и фотосферные телескопы (См. Фотосферный телескоп).

Быстро движущиеся по небу искусственные спутники Земли фотографируют с помощью спутниковых фотокамер (См. Спутниковая фотокамера), позволяющих с высокой точностью регистрировать моменты открывания и закрывания затвора.

При наблюдениях используют вспомогательные приборы: окулярные микрометры (См. Окулярный микрометр) - для измерения угловых расстояний, кассеты - для фотографирования, а также светоприёмную и анализирующую аппаратуру: Астроспектрографы (щелевые и бесщелевые, призменные, дифракционные и интерференционные) - для фотографирования спектров Солнца, звёзд, галактик, туманностей, а также объективные призмы (См. Объективная призма), устанавливаемые перед объективом телескопа и позволяющие получить на одной фотопластинке спектры большого количества звёзд. Небольшие и средние астроспектрографы монтируют на телескопе так, чтобы щель спектрографа была в фокусе телескопа (в главном фокусе, фокусах Ньютона, Кассегрена или Несмита); большие спектрографы устанавливают стационарно в помещении фокуса куде.

В большинстве случаев визуальные наблюдения глазом вытеснены наблюдениями с объективными светоприёмниками. В качестве последних применяют специальные высокочувствительные сорта фотопластинок, приборы для электрофотометрической регистрации излучения небесных светил с применением фотоумножителей и усилением света с помощью электронно-оптических преобразователей, практикуются телевизионные методы наблюдений, электронная фотография и использование светоприёмников инфракрасного излучения (см. Приёмники излучения).

В древности основным прибором времени служили солнечные часы, гномоны, а затем - стенные квадранты (См. Стенной квадрант), с помощью которых определяли моменты пересечения Солнцем или звездой плоскости меридиана. В современной астрономии для этой цели применяют пассажные инструменты с фотоэлектрической регистрацией. Наиболее точным маятниковым прибором для хранения времени являются часы Шорта, часы Федченко (см. Часы астрономические). Однако в настоящее время их вытесняют кварцевые и молекулярные (или атомные) часы.

Для обработки фотоснимков, получаемых в результате наблюдений, применяют лабораторные приборы: координатно-измерительные машины (См. Координатно-измерительная машина) (для измерения положения изображений небесных светил на фотоснимке), блинк-компараторы (для сравнения между собой двух фотоснимков одного и того же участка неба, полученных в разное время), Компараторы (для измерений длин волн спектральных линий на спектрограммах), Микрофотометры (для измерений распределения интенсивности в спектре на спектрограмме), звёздные микрофотометры (для определений яркости звёзд по фотографиям).

Для вычислений, связанных с обработкой результатов наблюдений, применяют счётно-решающие машины. К демонстрационным приборам относятся теллурии (См. Теллурий)- модели Солнечной системы, и планетарии (См. Планетарий), позволяющие на внутренней поверхности сферического купола наглядно показывать астрономические явления.

В истории наблюдательной астрономии можно отметить 4 основных этапа, характеризующихся различными средствами наблюдений. На 1-м этапе, относящемся к глубокой древности, люди с помощью специальных приспособлений научились определять время и измерять углы между светилами на небесной сфере. Повышение точности отсчётов достигалось главным образом увеличением размеров инструментов, 2-й этап относится к началу 17 в. и связан с изобретением телескопа и повышением с его помощью возможностей глаза при астрономических наблюдениях. С введением в практику астрономических наблюдений спектрального анализа и фотографии в середине 19 в. начался 3-й этап. Астрографы и спектрографы дали возможность получить сведения о химических и физических свойствах небесных тел и их природе. Развитие радиотехники, электроники и космонавтики в середине 20 в. привело к возникновению радиоастрономии и внеатмосферной астрономии, ознаменовавших 4-й этап.

Первым астрономическим инструментом можно считать вертикальный шест, закрепленный на горизонтальной площадке, - гномон, позволявший определять высоту Солнца, направление меридиана, устанавливать дни наступления равноденствий и солнцестояний. Изобретателями способа измерения и разделения времени считают вавилонян; но и в Египте и особенно позднее в Др. Греции в эти способы были внесены значительные изменения. Развитие конструкций астрономических инструментов в Китае с древнейших времён шло, по-видимому, независимо от аналогичных работ на Бл. и Ср. Востоке и на Западе. Достоверные сведения о древнегреческих астрономических инструментах стали достоянием последующих поколений благодаря "Альмагесту", в котором наряду с методикой и результатами астрономических наблюдений К. Птолемей приводит описание астрономических инструментов - гномона, армиллярной сферы, астролябии, квадранта, параллактической линейки, - применявшихся как его предшественниками (особенно Гиппархом), так и созданных им самим. Многие из этих инструментов были в дальнейшем усовершенствованы и ими пользовались на протяжении многих столетий.

В период раннего средневековья достижения древнегреческих астрономов были восприняты учёными Ближнего и Среднего Востока и Ср. Азии, которые усовершенствовали их инструменты и разработали ряд оригинальных конструкций. Известны труды о применении астролябий и о их конструкциях, о солнечных часах и гномонах, написанные аль-Хорезми, аль-Фергани, аль-Ходженди, аль-Бируни и др. Существенный вклад в развитие астрономических инструментов внесли астрономы Марагинской обсерватории (Насирэддин Туей, 13 в.) и Самаркандской обсерватории (Улугбек, 15 в.), на которой был установлен гигантский секстант радиусом около 40 м.

Через Испанию и Юж. Италию достижения этих астрономов стали известны в Сев. Италии, Германии, Англии и Франции. В 15-16 вв. европейские астрономы использовали наряду с инструментами собственной конструкции также и описанные учёными Востока. Широкую известность получили инструменты Г. Пурбаха, Региомонтана (И. Мюллера) и особенно Тихо Браге и Я. Гевелия, которые создали много оригинальных инструментов высокой точности.

Начало телескопической астрономии обычно связывают с именем Галилео Галилея, который с помощью изготовленной им самим в 1609 зрительной трубы (зрительная труба была изобретена незадолго перед этим в Голландии) сделал выдающиеся открытия и дал им правильное научное объяснение. В 1611 И. Кеплер опубликовал описание новой системы зрительной трубы, имевшей, помимо большего поля зрения, ещё одно важное преимущество: она давала в фокальной плоскости действительное изображение небесного объекта, которое стало возможным измерять, помещая в фокальную плоскость точную шкалу (крест нитей). Изобретение окулярного креста нитей микрометра в 40-70-х гг. 17 в., связанное с именами У. Гаскойна, Х. Гюйгенса, Ж. Пикара, А. Озу, значительно расширило возможности телескопа, сделав его не только наблюдательным инструментом, но и измерительным. Однолинзовые объективы первых рефракторов давали изображения невысокого качества - окрашенные и нерезкие. Некоторое улучшение изображений достигалось увеличением фокусного расстояния объектива, что привело к сооружению очень длинных громоздких телескопов.

В 17 и 18 вв. в разных странах было разработано несколько схем рефлекторов. Н. Цукки в 1616 предложил схему рефлектора с одиночным вогнутым зеркалом, наклоненным под небольшим углом к оси трубы, что позволяло обходиться без вторичного зеркала, обязательного в большинстве более поздних схем. Но сам Цукки не создал телескопа по предложенной им схеме. Однозеркальный рефлектор впервые был создан М. В. Ломоносовым (описан в 1762). Позднее большой однозеркальный рефлектор построил В. Гершель. В 1638 М. Мерсенн, в 1663 Дж. Грегори, в 1672Ф.Кассегрен разработали новые схемы рефлекторов - с двумя зеркалами. В 1668-71 И. Ньютон предложил схему и изготовил телескопы, в которых вторичное зеркало было плоским и наклонено под углом 45° к оси трубы для отражения лучей в окуляр, расположенный сбоку. Сравнительная простота изготовления привела к тому, что количество рефлекторов такого типа и размеры сооружаемых инструментов стали быстро расти; им длительное время отдавалось предпочтение.

Одновременно продолжали совершенствоваться и рефракторы. Возможность изготовления ахроматического объектива в 1742 была теоретически доказана Л. Эйлером, а в 1758 Дж. Доллонд создал такой объектив. Позднее, в 1-й четверти 19 в., благодаря усовершенствованию оптического стекловарения П. Гинаном и опыту И. Фраунгофера появились предпосылки для создания более совершенных рефракторов с ахроматическими объективами.

Лит.: Телескопы, под ред. Дж. Койпера и Б. Мнддлхёрст, пер. с англ., М., 1963; Максутов Д. Д., Астрономическая оптика, М.-Л., 1946; Мартынов Д. Я., Курс практической астрофизики, 2 изд., М., 1967; Методы астрономии, под ред. В. А. Хилтнера, пер. с англ., М., 1967; Современный телескоп, М., 1968; Rерsold J. В.. Zur Geschichte der astronomischen Messwerkzeuge, Lpz., 1908; King Н. C., The history of the telescope, L., 1955.

Н. Н. Михельсон. З. К. Новокшанова-Соколовская.

эфемерида         
ж.
1) Крылатое насекомое, жизнь которого продолжается от одного до двух дней; однодневка, подёнка.
2) перен. Что-л. недолговечное, непродолжительное, эфемерное.
Часы астрономические         
  • Внутри кирхи Девы Марии в [[Росток]]е

часы, отличающиеся большой точностью и используемые при астрономических наблюдениях. Знание точного времени необходимо при решении большинства задач астрометрии (См. Астрометрия), а также некоторых других разделов астрономии.

С древнейших времён вплоть до 15 в. время в астрономии измерялось солнечными, песочными и водяными часами. Часы с механизмом из зубчатых колёс впервые были применены для астрономических наблюдений в 1484. Однако вследствие несовершенства регулятора показания таких часов были грубы. Маятниковые часы, созданные впервые Х. Гюйгенсом (1657), нашли широкое применение в службах времени (См. Служба времени). Невозможность пользоваться маятниковыми часами в условиях мореплавания стимулировала создание Хронометра, который обеспечивает точность хода, достаточную в экспедиционных условиях, хотя и меньшую, чем у маятниковых часов. Главное требование, предъявляемое к Ч. а., сводится к обеспечению максимального постоянства периода, колебаний их регулятора (в маятниковых часах - Маятника). При постоянном ускорении силы тяжести период колебаний маятника зависит: от приведённой длины маятника, от амплитуды, от плотности среды, в которой колеблется маятник. Изменение этих величин оказывает существенное влияние на ход часов. Так, изменение приведённой длины маятника, происходящее главным образом из-за непостоянства температуры, на 1 мкм вызывает изменение суточного хода часов на 0,04 сек. Для максимального уменьшения влияния температуры на ход часов стержни маятников изготовляют из материалов с малым коэффициентом температурного расширения, устраивают различные компенсационные приспособления, часы помещают в изотермические камеры. Амплитуды маятников Ч. а. обычно не превышают 120'. Изменение этой величины на 0',1 изменяет суточный ход на 0,011 сек. Для устранения влияния изменении плотности среды маятник или весь механизм часов помещают в сосуд, из которого частично удалён воздух.

В конце 19 - начале 20 вв. получили распространение часы Рифлера, изменение суточного хода которых не превышало ±0,01 сек. В часах Рифлера впервые был применен т. н. свободный спуск маятника (см. Часы). В 1910 была разработана конструкция маятниковых часов Шорта с суточным изменением хода, не превышавшим ±0,01 сек. Основной особенностью этих часов является применение двух маятников. Первичный ("свободный") маятник, освобожденный от всякой механической работы, помещается в стеклянный цилиндр, в котором поддерживается давление 20 мм рт. ст. Цилиндр устанавливается в помещениях с круглогодично поддерживаемой постоянной температурой. Всю механическую работу по приведению в действие механизма часов исполнял вторичный маятник ("маятник-раб"), колебания которого с помощью специальной электрической системы синхронизировались с колебаниями первичного. Вторичный маятник даёт импульс для поддержания колебаний обоих маятников. Наиболее точные маятниковые часы - Федченко часы с изохронным подвесом маятника, обеспечивающим стабильную амплитуду качаний. Точность этих часов сравнима с точностью лучших кварцевых часов (См. Кварцевые часы), которые появились в 40-50-х гг. 20 в. Последние на относительно небольших интервалах времени обеспечивают точность отсчёта моментов времени, существенно более высокую, чем это дают астрономические наблюдения, но вследствие эффекта "старения" кварцевой пластинки они не могут определять самостоятельно равномерную шкалу времени. Кварцевые часы произвели переворот в деле получения и хранения точного времени. Это обеспечивается сопоставлением показаний многих кварцевых часов и астрономическими наблюдениями (см. Время).

Развитие науки и техники привело к тому, что астрономические требования к точности часов перестали быть уникальными. В то же время организация передач сигналов точного времени по радио и по телевизионным каналам позволила регулярно контролировать ход опорных часов астрономических обсерваторий по показаниям лучших часов единой государственной службы времени и т. о. значительно повысить надёжность их работы.

Е. А. Юров.

Википедия

Эфемерида

Эфемери́да (др.-греч. ἐφημερίς — на день, ежедневный ← ἐπί — на + ἡμέρα — день), в астрономии — таблица небесных координат Солнца, Луны, планет и других астрономических объектов, вычисленных через равные промежутки времени, например, на полночь каждых суток. Звёздные эфемериды — таблицы видимых положений звёзд в зависимости от влияния прецессии, аберрации, нутации. Также эфемеридой называется формула, по которой можно рассчитать момент наступления следующего момента минимума для затменных переменных систем звёзд.

Эфемериды, в частности, используются для определения координат наблюдателя (см. мореходная астрономия). Также эфемеридами называются координаты искусственных спутников Земли, используемых для навигации, например, в системе NAVSTAR (GPS), ГЛОНАСС, Galileo. Координаты спутников передаются в составе сообщений о местонахождении спутника, в этом случае говорят о передаче эфемерид.

Что такое Ежег<font color="red">о</font>дники астроном<font color="red">и</font>ческие - определение