Инерциальная навигационная система - определение. Что такое Инерциальная навигационная система
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Инерциальная навигационная система - определение

ГИРОСКОПИЧЕСКОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВЫХ СКОРОСТЕЙ И ПОЛОЖЕНИЯ В ПРОСТРАНСТВЕ
Гиростабилизированная платформа; Гиро-стабилизация; Гиростабилизация
  • МБР]]
Найдено результатов: 1927
Инерциальная навигационная система      

система инерциальной навигации, навигационное устройство, в основу работы которого положены классические (ньютоновские) законы механики. В И. н. с. исходной (главной) системой отсчёта, по отношению к которой производятся инерциальные измерения, служит инерциальная (абсолютная, т. е. неподвижная относительно звёзд) система. Посредством И. н. с. определяют координаты, скорость, ускорение и др. основные параметры движения объекта (самолёта, ракеты, космического корабля, надводных и подводных судов и др.). И. н. с. имеют перед другими навигационными системами (см. Радионавигационная система) большие и важные преимущества - универсальность применения, возможность определения основных параметров движения, автономность действия, абсолютную помехозащищенность. Эти качества определили И. н. с. как наиболее перспективную навигационную систему.

Принцип действия И. н. с. состоит в моделировании (представлении) поступательного движения объекта, характеризуемого изменением во времени ускорения, скорости и координат, подобным процессом движения воспринимающего элемента (массы) пространственного (трёхкомпонентного) Акселерометра (в общем случае с компенсацией гравитационного ускорения). Уравнение движения воспринимающего элемента в инерциальной системе координат является основным уравнением инерциального метода определения параметров движения; в общем случае имеет вид:

где ω̅ - ускорение, измеряемое акселерометром; - радиус-вектор точки М (центра тяжести воспринимающего элемента) в инерциальной системе координат; - сила притяжения единицы массы воспринимающего элемента в точке М (ускорение тяготения).

Сущность инерциального метода (рис.) состоит в измерении акселерометром исходного параметра (ускорения) и интегрировании основного уравнения: одинарном - для определения скорости, двойном - для определения координат. Ориентирование измерительных осей акселерометров по заданным направлениям производится свободными или управляемыми (по сигналам от акселерометров) гироскопическими устройствами (См. Гироскопические устройства) (гироскопом, гиростабилизатором, гирорамой и др.) или астростабилизаторами, а также сочетанием этих средств. Для интегрирования основного уравнения используются гироскопические, электромеханические и др. Интеграторы. И. н. с. содержит построитель (инерциальная вертикаль) или вычислитель направления вертикали места. Инерциальная вертикаль является высокоточной вертикалью и не возмущается (не отклоняется от вертикали места) при наличии горизонтальных ускорений.

И. н. с. различают по ряду признаков: по ориентации направлений осей чувствительности инерциальных измерителей (с произвольной ориентацией, с ориентацией по звёздам, по осям, жестко связанным с объектом, с неизменной ориентацией относительно небесного тела, например Земли, с горизонтальной ориентацией и др.); по способу построения вертикали места (с аналитической, или расчётной, вертикалью, с инерциальным построителем вертикали); по наличию стабилизированной платформы (со стабилизированной гироскопической или астроплатформой, бесплатформенные) и др.

И. н. с. весьма сложны, дорогостоящи. Срок службы их меньше, чем у обычных гироскопических приборов. Для правильного функционирования И. н. с. перед стартом объекта требуется ввести начальные данные по координатам пункта старта и скорости, произвести ориентирование инерциальных измерителей. Точность некорректируемых И. н. с. зависит от времени. Поэтому возможность получения информации от И. н. с., удовлетворяющей заданным требованиям, ограничена во времени. Так, за час полёта лучшие образцы И. н. с. имеют погрешность в определении координат примерно 1,5-5 км. Для уменьшения погрешностей и расширения возможностей использования применяют различные способы коррекции от радионавигационных, радиолокационных и астронавигационных средств.

Лит.: Принципы инерциальной навигации, пер. с англ., под ред. В. А. Боднера, М., 1965; Помыкаев И. И., Инерциальный метод измерения параметров движения летательных аппаратов, М., 1969.

И. И. Помыкаев.

Блок-схема инерциальной навигационной системы: 1 - блок инерциальных измерителей и построителей направлений в пространстве (акселерометры и гироскопические устройства), посредством которого реализуется заданная ориентация измерительных осей и с которого выдаётся измерительная информация в вычислитель; 2 - вычислительный блок, в котором осуществляются интегрирование основного уравнения, вычисление необходимых параметров движения, формирование сигналов (в некоторых инерциальных навигационных системах) управления ориентацией инерциальных измерителей и сигналов компенсации систематических погрешностей (ускорения тяготения, поворотного ускорения, от несферичности Земли и др.); 3 - блок времени, из которого в блоки 1, 2, 4 поступают сигналы мирового времени; 4 - блок ввода начальной информации в блоки 1 и 2 для ориентации инерциальных измерителей и интегрирования основного уравнения; А - поступление начальной информации; Б - выдача конечной информации о параметрах движения. Стрелками показаны направления поступления информации.

Гиростабилизированная платформа         

гироскопическое устройство для пространственной стабилизации каких-либо объектов или приборов, а также для определения углов поворота основания, на котором установлена Г. п. Подробнее см. Гиростабилизатор.

ГИРОСТАБИЛИЗИРОВАННАЯ ПЛАТФОРМА         
площадка, удерживаемая в заранее заданном положении системой гироскопов и не участвующая в колебаниях корпуса летательного аппарата. Применяется в основном для определения углового положения летательного аппарата.
Гиростабилизатор         
Гиростабилизатор — гироскопическое устройство, предназначенное для стабилизации отдельных предметов или приборов, а также для определения угловых отклонений предметов. По принципу действия гиростабилизаторы делятся на непосредственные, силовые и индикаторные.
Гиростабилизатор         

гироскопическое устройство (См. Гироскопические устройства), предназначенное для стабилизации отдельных объектов или приборов, а также для определения угловых отклонений объектов. По принципу действия Г. делятся на непосредственные, силовые и индикаторные.

Непосредственные Г. - устройства, в которых непосредственно используются стабилизирующие свойства трёхстепенного Гироскопа. Применяются в качестве успокоителей бортовой качки корабля, стабилизаторов вагона однорельсовой ж. д. и др. (вес и габариты подобных Г. весьма существенны), а также для стабилизации чувствительных элементов систем управления. Например, Г. (рис. 1), состоящий из гирокамеры 1 с ротором, установленной в наружном кардановом кольце (раме) 2, осуществляет непосредственную стабилизацию антенны 3 и координатора 4. Координатор вырабатывает сигналы, пропорциональные углам отклонения оси антенны от заданного направления ОА. Эти сигналы через усилители-преобразователи 5 и 6 - поступают на датчики моментов 7 и 8 системы коррекции, осуществляющей автоматическое слежение оси антенны за указанным направлением. Подобные Г. называют гироскопическими следящими системами.

Силовые Г. (гирорамы) - электромеханические устройства, содержащие, кроме гироскопов, специальные двигатели для преодоления воздействия на стабилизируемый объект внешних возмущающих моментов. Применяются на кораблях, летательных аппаратах и др. объектах для стабилизации отдельных приборов и устройств. Кроме того, по принципу силовой гироскопической стабилизации работают некоторые типы гироскопов направления, гировертикалей и комбинированных устройств, называемых гироазимутгоризонтами. Силовые Г. в зависимости от числа гироскопов в раме могут быть одно- и двухгироскопными, а по числу осей стабилизации - одно-, двух- и трёхосными. У одноосного силового Г. с одним гироскопом (рис. 2) основным элементами являются гирокамера 1 с ротором; рама 2, играющая роль наружного карданова кольца и жестко связанная со стабилизируемым объектом; датчик угла 3, установленный на оси прецессии Ox; усилитель 4; стабилизирующий двигатель 5, предназначенный для приложения относительно оси стабилизации моментов, компенсирующих действующие на раму внешние возмущающие моменты; маятник-корректор 6 и датчик моментов 7, являющиеся элементами системы коррекции Г. При действии внешнего возмущающего момента М, стремящегося повернуть раму вокруг оси , гирокамера 1 по свойствам гироскопа начнёт прецессировать вокруг оси Ox; при этом возникает гироскопический момент Мг, противодействующий моменту М. В дальнейшем при повороте гирокамеры вокруг оси Ox на некоторый угол β датчик угла 3 через усилитель 4 включит стабилизирующий двигатель 5, прикладывающий относительно оси момент стабилизации Мс, противоположный моменту М. В результате гирокамера начнёт прецессировать в обратном направлении и остановится (при постоянной величине М) в положении, для которого Мс + М = 0. Т. о., в силовом Г. гироскоп осуществляет стабилизацию лишь в первый момент; в дальнейшем её обеспечивает стабилизирующий двигатель, что позволяет стабилизировать значительные массы при сравнительно небольшом весе и габаритах самого гироскопа. На практике применяют также двухгироскопные Г., обладающие рядом преимуществ по сравнению с одногироскопными.

Сочетание двух одноосных Г. даёт двухосный Г., стабилизирующий платформу относительно плоскости горизонта; этот Г. может быть также использован в качестве гировертикали силового типа. Сочетание трёх одноосных Г. даёт трёхосный силовой гиростабилизатор (гироазимутгоризонт) - устройство, состоящее из гироскопа направления (гироазимута) и гировертикали (гирогоризонта). Он служит для измерения трёх углов, определяющих положение объекта, и применяется на кораблях и самолётах. Трёхосный Г. используется также для пространственной стабилизации некоторой платформы (гиростабилизированная платформа). Подобные Г. применяют в инерциальных навигационных системах (См. Инерциальная навигационная система).

Индикаторные Г. - системы автоматического регулирования, в которых гироскопические устройства, установленные на стабилизируемом объекте (например, платформе), являются чувствительными или задающими элементами, определяющими положение объекта и управляющими следящими системами; стабилизация же объекта (платформы) осуществляется с помощью следящих систем. В качестве чувствительных элементов, реагирующих на угловые скорости или углы отклонения платформы, применяют двухстепенные (например, поплавковые интегрирующие) гироскопы и гиротахометры или трёхстепенные астатические гироскопы. Индикаторные Г. используют в инерциальных навигационных системах, устанавливаемых на кораблях и летательных аппаратах.

А. Ю. Ишлинский, С. С. Ривкин.

Рис. 1. Принципиальная схема гироскопической следящей системы: 1 - гирокамера с ротором; 2 - наружное карданово кольцо (рама); 3 - антенна; 4 - координатор; 5, 6 - усилители-преобразователи; 7, 8 - датчики моментов.

Рис. 2. Принципиальная схема одноосного силового гиростабилизатора с одним гироскопом: 1 - гирокамера с ротором; 2 - рама; 3 - датчик угла; 4 - усилитель; 5 - стабилизирующий двигатель; 6 - маятник-корректор; 7 - датчик моментов; Oξηζ - оси системы отсчёта; Охуz - оси, связанные с гирокамерой; Ox - ось прецессии; Oη - ось стабилизации; α - погрешность стабилизации; β - угол прецессии.

Инерциальная система отсчёта         
СИСТЕМА ОТСЧЁТА, В КОТОРОЙ ВСЕ СВОБОДНЫЕ ТЕЛА ДВИЖУТСЯ ПРЯМОЛИНЕЙНО И РАВНОМЕРНО, ЛИБО ПОКОЯТСЯ
Инерциальная система отсчета; Инерциальные системы отсчёта; Геоцентрическая широта

Система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система отсчёта, движущаяся по отношению к И. с. о. поступательно, равномерно и прямолинейно, есть также И. с. о. Следовательно, теоретически может существовать сколько угодно равноправных И. с. о., обладающих тем важным свойством, что во всех таких системах законы физики одинаковы (так называемый принцип относительности). Помимо закона инерции, в любой И. с. о. справедливы также 2-й закон Ньютона (см. Ньютона законы механики) и законы сохранения количества движения (См. Количество движения) (импульса), момента количества движения (См. Момент количества движения) и движения центра инерции (См. Центр инерции) (или центра масс) для замкнутых, т. е. не подверженных внешним воздействиям, систем.

Если система отсчёта движется по отношению к И. с. о. неравномерно и прямолинейно, то она является неинерциальной и ни закон инерции, ни другие названные законы в ней не выполняются. Объясняется это тем, что по отношению к неинерциальной системе отсчёта материальная точка будет иметь ускорение даже при отсутствии действующих сил вследствие ускоренного поступательного или вращательного движения самой системы отсчёта.

Понятие об И. с. о. является научной абстракцией. Реальная система отсчёта связывается всегда с каким-нибудь конкретным телом (Землёй, корпусом корабля или самолёта и т. п.), по отношению к которому и изучается движение тех или иных объектов. Поскольку в природе нет неподвижных тел (тело, неподвижное относительно Земли, будет двигаться вместе с нею ускоренно по отношению к Солнцу и звёздам и т. д.), то любая реальная система отсчёта может рассматриваться как И. с. о. лишь с той или иной степенью приближения. С очень высокой степенью точности И. с. о. можно считать так называемую гелиоцентрическую (звёздную) систему с началом в центре Солнца (точнее, в центре масс Солнечной системы) и с осями, направленными на три звезды. Такая И. с. о. используется главным образом в задачах небесной механики и космонавтики. Для решения большинства технических задач И. с. о. практически может служить система, жестко связанная с Землёй, а в случаях, требующих большей точности (например, в гироскопии), - с началом в центре Земли и осями, направленными на звёзды.

При переходе от одной И. с. о. к другой в классической механике Ньютона для пространственных координат и времени справедливы преобразования Галилея (см. Галилея принцип относительности), а в релятивистской механике (т. е. при скоростях движения, близких к скорости света) - Лоренца преобразования.

Лит. см. при статьях Система отсчета (См. Система отсчёта), Относительности теория.

С. М. Тарг.

ИНЕРЦИАЛЬНАЯ СИСТЕМА ОТСЧЕТА         
СИСТЕМА ОТСЧЁТА, В КОТОРОЙ ВСЕ СВОБОДНЫЕ ТЕЛА ДВИЖУТСЯ ПРЯМОЛИНЕЙНО И РАВНОМЕРНО, ЛИБО ПОКОЯТСЯ
Инерциальная система отсчета; Инерциальные системы отсчёта; Геоцентрическая широта
система отсчета, в которой справедлив закон инерции: материальная точка, на которую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения. Любая система отсчета, движущаяся относительно инерциальной системы отсчета поступательно, равномерно и прямолинейно, также является инерциальной системой отсчета. Все инерциальные системы отсчета равноправны, т. е. во всех таких системах законы физики одинаковы.
Инерциальная система отсчёта         
СИСТЕМА ОТСЧЁТА, В КОТОРОЙ ВСЕ СВОБОДНЫЕ ТЕЛА ДВИЖУТСЯ ПРЯМОЛИНЕЙНО И РАВНОМЕРНО, ЛИБО ПОКОЯТСЯ
Инерциальная система отсчета; Инерциальные системы отсчёта; Геоцентрическая широта
Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой все свободные тела движутся прямолинейно и равномерно либо покоятся«Система отсчёта называется инерциальной, если по отношению к ней любая свободная от взаимодействий с другими объектами Вселенной (изолированная) материальная точка движется равномерно и прямолинейно». .
Астроинерциальная навигация         
Астроинерциальная навигационная система
Астроинерциальная навигация — комплекс методов определения навигационных параметров объекта, основанный на комплексировании астрономической и инерциальной навигации. Астроинерциальные навигационные системы обычно представляют собой модификацию инерциальной навигационной системы.
Астроинерциальная навигация         
Астроинерциальная навигационная система

метод навигации космического летательного аппарата, комбинирующий средства инерциальной системы навигации (См. Инерциальная навигационная система) и астрономической навигации (См. Навигация воздушная). Основная цель - астрокоррекция гиростабилизированных платформ (См. Гиростабилизированная платформа).

Википедия

Гиростабилизатор

Гиростабилизатор — гироскопическое устройство, предназначенное для стабилизации отдельных предметов или приборов, а также для определения угловых отклонений предметов. По принципу действия гиростабилизаторы делятся на непосредственные, силовые и индикаторные.