КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ: ПРИМЕНЕНИЕ КРИСТАЛЛОВ - определение. Что такое КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ: ПРИМЕНЕНИЕ КРИСТАЛЛОВ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ: ПРИМЕНЕНИЕ КРИСТАЛЛОВ - определение

Габитус (кристаллов); Облик кристаллов; Габитус кристалла
Найдено результатов: 6255
КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ: ПРИМЕНЕНИЕ КРИСТАЛЛОВ      
К статье КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ
Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С давних пор с кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями. Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни, многие суеверия сохранились в талисманах "на счастье" и "своих камнях", соответствующих месяцу рождения. Все природные драгоценные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов. Украшения из кристаллов сейчас столь же популярны, как и во время неолита.
Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов.
Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.
Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный. См. также ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ; ТРАНЗИСТОР.
Кристаллы используются также в некоторых мазерах для усиления волн СВЧ-диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет. См. также ЛАЗЕР; КВАНТОВЫЕ ГЕНЕРАТОРЫ И УСИЛИТЕЛИ.
Искусственные кристаллы. С давних пор человек мечтал синтезировать камни, столь же драгоценные, как и встречающиеся в природных условиях. До 20 в. такие попытки были безуспешны. Но в 1902 удалось получить рубины и сапфиры, обладающие свойствами природных камней. Позднее, в конце 1940-х годов были синтезированы изумруды, а в 1955 фирма "Дженерал электрик" и Физический институт АН СССР сообщили об изготовлении искусственных алмазов.
Многие технологические потребности в кристаллах явились стимулом к исследованию методов выращивания кристаллов с заранее заданными химическими, физическими и электрическими свойствами. Труды исследователей не пропали даром, и были найдены способы выращивания больших кристаллов сотен веществ, многие из которых не имеют природного аналога. В лаборатории кристаллы выращиваются в тщательно контролируемых условиях, обеспечивающих нужные свойства, но в принципе лабораторные кристаллы образуются так же, как и в природе - из раствора, расплава или из паров. Так, пьезоэлектрические кристаллы сегнетовой соли выращиваются из водного раствора при атмосферном давлении. Большие кристаллы оптического кварца выращиваются тоже из раствора, но при температурах 350-450. C и давлении ?140 МПа. Рубины синтезируют при атмосферном давлении из порошка оксида алюминия, расплавляемого при температуре 2050. C. Кристаллы карбида кремния, применяемые в качестве абразива, получают из паров в электропечи. См также АБРАЗИВЫ; ФИЗИКА ТВЕРДОГО ТЕЛА.
Практическое применение раскраски графов         
Существуют многочисленные практические приложения раскраски графов. Когда приложение моделируется как проблема с раскраской вершин графа, то вершины в каждом цветовом классе обычно представляют отдельные субъекты, которые не конкурируют или не конфликтуют друг с другом.
кристаллография         
  • [[Почтовая марка]] [[СССР]], [[1966 год]]: <br /> VII международный конгресс кристаллографов
КРИСТАЛЛОГР'АФИЯ, см. КРИСТАЛОГРАФИЯ
.
СИММЕТРИЯ КРИСТАЛЛОВ         
  • [[Почтовая марка]] [[СССР]], [[1966 год]]: <br /> VII международный конгресс кристаллографов
закономерность атомного строения, внешней формы и физических свойств кристаллов, заключающаяся в том, что кристалл может быть совмещен с самим собой путем поворотов, отражений, параллельных переносов (трансляций) и др. преобразований симметрии, а также комбинаций этих преобразований. Симметрия свойств кристалла обусловлена симметрией его строения.
Симметрия кристаллов         
  • [[Почтовая марка]] [[СССР]], [[1966 год]]: <br /> VII международный конгресс кристаллографов

свойство кристаллов совмещаться с собой в различных положениях путём поворотов, отражений, параллельных переносов либо части или комбинации этих операций. Симметрия внешней формы (огранки) кристалла определяется симметрией его атомного строения, которая обусловливает также и симметрию физических свойств кристалла.

На рис. 1, а изображен кристалл Кварца. Внешняя его форма такова, что поворотом на 120° вокруг оси 3 он может быть совмещен сам с собой (совместимое равенство). Кристалл метасиликата натрия (рис. 1, б) преобразуется в себя отражением в плоскости симметрии m (зеркальное равенство). Т. о., симметрия означает возможность преобразования объекта совмещающего его с собой. Если F (x1, x2, x3) - функция, описывающая объект, например форму кристалла в трёхмерном пространстве или какое-либо его свойство, а операция g [x1, x2, x3] осуществляет преобразование координат всех точек объекта, то g является операцией или преобразованием симметрии, а F - симметричным объектом, если выполняются условия:

g [x1,. x2, x3] = x'1, x'2, x'3 (1, a)

F (x1, x2, x3) = F (x2, x2, x3). (1, б)

В наиболее общей формулировке симметрия - неизменность (инвариантность) объектов при некоторых преобразованиях описывающих их переменных. Кристаллы - объекты в трёхмерном пространстве, поэтому классическая теория С. к. - теория симметрических преобразований в себя трёхмерного пространства с учётом того, что внутренняя атомная структура кристаллов - трёхмерно-периодическая, т. е. описывается как Кристаллическая решётка. При преобразованиях симметрии пространство не деформируется, а преобразуется как жёсткое целое (ортогональное, или изометрическое, преобразование). После преобразования симметрии части объекта, находившиеся в одном месте, совпадают с частями, находящимися в др. месте. Это означает, что в симметричном объекте есть равные части (совместимые или зеркальные).

С. к. проявляется не только в их структуре и свойствах в реальном трёхмерном пространстве, но также и при описании энергетического спектра электронов кристалла в импульсном пространстве (см. Твёрдое тело), при анализе процессов дифракции рентгеновских лучей (См. Дифракция рентгеновских лучей) в кристаллах с помощью пространства обратных длин и т. п.

Группа симметрии кристаллов. Кристаллу может быть присуща не одна, а несколько операций симметрии. Так, кристалл кварца (рис. 1, а) совмещается с собой нс только при повороте на 120° вокруг оси 3 (операция g1), ной при повороте вокруг оси 3 на 240° (операция g2), а также при поворотах на 180° вокруг осей 2x, 2y, 2w (операции g3, g4 и g5). Каждой операции симметрии может быть сопоставлен геометрический образ - элемент симметрии - прямая, плоскость или точка, относительно которой производится данная операция. Например, ось 3 или оси 2x, 2y, 2w являются осями симметрии, плоскость m (рис. 1, б) - плоскостью зеркальной симметрии и т. п. Совокупность операций симметрии [g1,..., gn] данного кристалла образует группу симметрии G в смысле математической теории групп (См. Группа). Последовательное проведение двух операций симметрии также является операцией симметрии. Всегда существует операция идентичности g0, ничего не изменяющая в кристалле, называется отождествлением, геометрически соответствующая неподвижности объекта или повороту его на 360° вокруг любой оси. Число операций, образующих группу G, называется порядком группы.

Группы симметрии классифицируют: по числу n измерений пространства, в которых они определены; по числу т измерений пространства, в которых объект периодичен (их соответственно обозначают Gmn) и по некоторым другим признакам. Для описания кристаллов используют различные группы симметрии, из которых важнейшими являются пространственные группы (См. Пространственная группа) симметрии G33, описывающие атомную структуру кристаллов, и точечные группы (См. Точечная группа) симметрии G03, описывающие их внешнюю форму. Последние называются также кристаллографическими классами.

Симметрия огранки кристаллов. Операциями точечной симметрии являются: повороты вокруг оси симметрии порядка N на 360°/N (рис. 2, а), отражение в плоскости симметрии (зеркальное отражение, рис. 2, б), инверсия (симметрия относительно точки, рис. 2, в), инверсионные повороты (комбинация поворота на 360°/N с одновременной инверсией, рис. 2, г). Вместо инверсионных поворотов иногда рассматривают зеркальные повороты . Геометрически возможные сочетания этих операций определяют ту или иную точечную группу (рис. 3), которые изображаются обычно в стереографической проекции. При преобразованиях точечной симметрии по крайней мере одна точка объекта остаётся неподвижной - преобразуется сама в себя. В ней пересекаются все элементы симметрии, и она является центром стереографической проекции.

Точечные преобразования симметрии g [x1, x2, x3] = x'1, x'2, x'3 описываются линейными уравнениями:

x'1 = а11х1 + a12x2 + a13x3,

x'2 = a21x1 + a22x2 + a23x3, (2)

x'3 = a31x1 + a32x2 + a33x3,

т. е. матрицей коэффициента (aij). Например, при повороте вокруг хз на угол α = 360°/N матрица коэффициентов имеет вид:

, (3)

а при отражении в плоскости x1, x2 имеет вид:

(3a)

Поскольку N может быть любым, число групп бесконечно. Однако в кристаллах ввиду наличия кристаллической решётки возможны только операции и соответственно оси симметрии до 6-го порядка (кроме 5-го), которые обозначаются символами: 1, 2, 3, 4, 6, а также инверсионные оси: (она же центр симметрии), = m (она же плоскость симметрии), . Поэтому количество точечных кристаллографических групп, описывающих внешнюю форму кристаллов, ограничено. Эти 32 группы С. к. приведены в таблице. В международные обозначения точечных групп входят символы основных (порождающих) элементов симметрии, им присущих. Эти группы объединяются по симметрии формы элементарной ячейки (с периодами а, b, с и углами α, β, γ) в 7 сингоний кристаллографических (См. Сингония кристаллографическая) - триклинную, моноклинную, ромбическую, тетрагональную, тригональную, гексагональную и кубическую. Принадлежность кристалла к той или иной группе определяется гониометрически (см. Гониометр) или рентгенографически (см. Рентгеновский структурный анализ).

Группы, содержащие лишь повороты, описывают кристаллы, состоящие только из совместимо равных частей. Эти группы называются группами 1-го рода. Группы, содержащие отражения, или инверсионные повороты, описывают кристаллы, в которых есть зеркально равные части (но могут быть и совместимо равные части). Эти группы называются группами 2-го рода. Кристаллы, описываемые группами 1-го рода, могут кристаллизоваться в двух энантиоморфных формах, условно называемых "правой" и "левой", каждая из них не содержит элементов симметрии 2-го рода, но они зеркально равны друг другу (см. Энантиоморфизм, Кварц).

Точечные группы описывают симметрию не только кристаллов, но любых конечных фигур. В живой природе часто наблюдается запрещенная в кристаллографии симметрия с осями 5-го, 7-го порядка и выше. Например, для описания регулярной структуры сферических вирусов (См. Вирусы) (рис. 4), в оболочках которых соблюдаются кристаллографические принципы плотной укладки молекул, оказалась важной икосаэдрическая точечная группа 532.

Симметрия физических свойств. Предельные группы. В отношении макроскопических физических свойств (оптических, электрических, механических и др.), кристаллы ведут себя как однородная анизотропная среда, т. е. дискретность их атомной структуры не проявляется. Однородность означает, что свойства одинаковы в любой точке кристалла, однако при этом многие свойства зависят от направления (см. Анизотропия). Зависимость от направления можно представить в виде функции и построить указательную поверхность данного свойства (рис. 5, см. также ст. Кристаллооптика). Эта функция, которая может быть различной для разных физических свойств кристалла (векторной или тензорной) имеет определённую точечную симметрию, однозначно связанную с группой симметрии огранения кристалла. Она либо совпадает с ней, либо выше её по симметрии (принцип Неймана).

Многие из свойств кристаллов, принадлежащих к определённым классам, описываются предельными точечными группами, содержащими оси симметрии бесконечного порядка, обозначаемые ∞. Наличие оси ∞ означает, что объект совмещается с собой при повороте на любой, в том числе бесконечно малый угол. Таких групп 7, они представлены на рис. 6 образцовыми фигурами и соответствующими символами. Т. о., всего имеется 32 + 7 = 39 точечных групп, описывающих симметрию свойств кристаллов. Зная группу С. к., можно указать возможность наличия или отсутствия в нём некоторых физических свойств (см. Кристаллы, Кристаллофизика).

Обозначения и названия 32 групп точечной симметрии

----------------------------------------------------------------------------------------------------------------------------------------------------------

| Сингония | Обозначения | Название | Соотношение |

| | | | констант эле- |

| |----------------------------------------------------| | |

| | международные | по Шенфлису | | ментарной |

| | | | | ячейки |

| | | | | |

| | | | | |

| | | | | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------|

| Триклинная | | С1 | Моноэдрическая | а b с |

| |----------------------------------------------------------------------------------------------------------------------------|

| | | С1 | Пинакоидальная | α β γ 90° |

|---------------------------------------------------------------------------------------------------------------------------------------------------------|

| Моноклинная | 2 | С2 | Диэдрическая осевая | а b с |

| |----------------------------------------------------------------------------------------------------------------------------|

| | m | Cs | Диэдрическая безосная | α = γ = 90° |

| |----------------------------------------------------------------------------------------------------------------------------|

| | 2/m | C2h | Призматическая | β 90° |

|---------------------------------------------------------------------------------------------------------------------------------------------------------|

| Ромбическая | 222 | D2 | Ромбо-тетраэдрическая | а b с |

| |----------------------------------------------------------------------------------------------------------------------------|

| | mm | C2υ | Ромбо-пирамидальная | |

| |----------------------------------------------------------------------------------------------------------------------------|

| | mmm | D2h | Ромбо-дипирамидальная | α = β = γ = 90° |

|---------------------------------------------------------------------------------------------------------------------------------------------------------|

| Тетрагональная | 4 | C4 | Тетрагонально- | а = b с |

| | | | пирамидальная | α = β = γ = 90° |

| |-----------------------------------------------------------------------------------------------| |

| | 422 | D4 | Тетрагонально- | |

| | | | трапецоэдрическая | |

| |-----------------------------------------------------------------------------------------------| |

| | 4/m | C4h | Тетрагонально- | |

| | | | дипирамидальная | |

| |-----------------------------------------------------------------------------------------------| |

| | 4mm | C4υ | Дитетрагонально- | |

| | | | пирамидальная | |

| |-----------------------------------------------------------------------------------------------| |

| | 4/mmm | D4h | Дитетрагонально- | |

| | | | дипирамидальная | |

| |-----------------------------------------------------------------------------------------------| |

| | | S4 | Тетрагонально- | |

| | | | тетраэдрическая | |

| |-----------------------------------------------------------------------------------------------| |

| | | D2d | Тетрагонально- | |

| | | | скаленоэдрическая | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------|

| Тригональная | 3 | C3 | Тригонально- | а = b = с |

| | | | пирамидальная | α = β = γ 90° |

| |-----------------------------------------------------------------------------------------------| |

| | 32 | D3 | Тригонально- | |

| | | | трапецоэдрическая | |

| |-----------------------------------------------------------------------------------------------| |

| | 3m | C3υ | Дитригонально- | |

| | | | пирамидальная | |

| |-----------------------------------------------------------------------------------------------| |

| | | C3i | Ромбоэдрическая | |

| |-----------------------------------------------------------------------------------------------| |

| | | D3d | Дитригонально- | |

| | | | скаленоэдрическая | |

| |-----------------------------------------------------------------------------------------------| |

| | | C3h | Тригонально- | |

| | | | дипирамидальная | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------|

| Гексагональная | | D3h | Дитригонально- | а = b с |

| | | | дипирамидальная | α = β = 90° |

| |-----------------------------------------------------------------------------------------------| γ = 120° |

| | 6 | C6 | Гексагонально- | |

| | | | пирамидальная | |

| |-----------------------------------------------------------------------------------------------| |

| | 62 | D6 | Гексагонально- | |

| | | | трапецоэдрическая | |

| |-----------------------------------------------------------------------------------------------| |

| | 6/m | C6h | Гексагонально- | |

| | | | дипирамидальная | |

| |-----------------------------------------------------------------------------------------------| |

| | 6mm | C6υ | Дигексагонально- | |

| | | | пирамидальная | |

| |-----------------------------------------------------------------------------------------------| |

| | 6/mmm | D6h | Дигексагонально- | |

| | | | дипирамидальная | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------|

| Кубическая | 23 | T | Тритетраэдрическая | а = b = с |

| |-----------------------------------------------------------------------------------------------| α = β = γ = 90° |

| | m3 | Th | Дидодекаэдрическая | |

| |-----------------------------------------------------------------------------------------------| |

| | | Td | Гексатетраэдрическая | |

| |-----------------------------------------------------------------------------------------------| |

| | 43 | O | Триоктаэдрическая | |

| |-----------------------------------------------------------------------------------------------| |

| | m3m | Oh | Гексоктаэдрическая | |

----------------------------------------------------------------------------------------------------------------------------------------------------------

Пространственная симметрия атомной структуры кристаллов (кристаллической решётки) описывается пространственными группами симметрии G33. Характерными для решётки операциями являются три некомпланарных переноса а, b, с, называемых трансляциями, которые задают трёхмерную периодичность атомной структуры кристаллов. Сдвиг (перенос) структуры на векторы a1, b2, c3 или любой вектор t = p1a1 + p2b2 + p3c3, где p1, p2, p3 - любые целые положительные или отрицательные числа, совмещает структуру кристалла с собой, и следовательно, является операцией симметрии, удовлетворяющей условиям (1, а, б). Параллелепипед, построенный на векторах а, b и c, называется параллелепипедом повторяемости или элементарной ячейкой кристалла (рис. 7, а, б). В элементарной ячейке содержится некоторая минимальная группировка атомов, "размножение" которой операциями симметрии, в том числе трансляциями, образует кристаллическую решётку. Элементарная ячейка и размещение в ней атомов устанавливается методами рентгеновского структурного анализа (См. Рентгеновский структурный анализ), электронографии (См. Электронография) или нейтронографии (См. Нейтронография).

Вследствие возможности комбинирования в решётке трансляций и операций точечной симметрии в группах G33 возникают операции и соответствующие им элементы симметрии с трансляционной компонентой - винтовые оси различных порядков и плоскости скользящего отражения (рис. 2, д).

Всего известно 230 пространственных (фёдоровских) групп симметрии G33, и любой кристалл относится к одной из этих групп. Трансляционные компоненты элементов микросимметрии макроскопически не проявляются, например винтовая ось в огранке кристаллов проявляется как соответствующая по порядку простая поворотная ось. Поэтому каждая из 230 групп G33 макроскопически сходственна с одной из 32 точечных групп. Например, точечной группе mmm или D2h сходственны 28 пространственных групп. Совокупность переносов, присущих данной пространственной группе, есть её трансляционная подгруппа, или Браве решётка; таких решёток существует 14.

Симметрия слоев и цепей. Для описания плоских или вытянутых в одном направлении фрагментов структуры кристаллов могут быть использованы группы G23 - двумерно периодические и G13 - одномерно периодические в трёхмерном пространстве. Эти группы играют важную роль в изучении биологических структур и молекул. Например, группы G23 описывают строение биологических мембран (См. Мембраны биологические), группы G13 - цепных молекул (рис. 8, а) палочкообразных вирусов (См. Вирусы), трубчатых кристаллов глобулярных белков (См. Белки) (рис. 8, б), в которых молекулы уложены согласно спиральной (винтовой) симметрии, возможной в группах G13.

Обобщённая симметрия. В основе определения симметрии лежит понятие равенства (1, б) при преобразовании (1, а). Однако физически (и математически) объект может быть равен себе по одним признакам и не равен по другим. Например, распределение ядер и электронов в кристалле Антиферромагнетика можно описать с помощью обычной пространственной симметрии, но если учесть распределение в нём магнитных моментов (рис. 9), то "обычной", классической симметрии уже недостаточно. К подобного рода обобщениям симметрии относится антисимметрия и цветная симметрия. В антисимметрии в дополнение к трём пространственным переменным x1, x2, x3 вводится добавочная, 4-я переменная x4 = ± 1. Это можно истолковать таким образом, что при преобразовании (1, а) функция F может быть не только равна себе, как в (1, б), но и изменить знак. Условно такую операцию можно изобразить изменением цвета (рис. 10). Существует 58 групп точечной антисимметрии и 1651 пространственная группа антисимметрии (шубниковских групп). Если добавочная переменная приобретает не два значения, а несколько (возможны числа 3, 4, 6, 8,..., 48), то возникает "цветная" симметрия Белова. Так, известна 81 точечная группа G03, ц. Основные приложения обобщённой симметрии в кристаллографии - описание магнитных структур.

Др. обобщения симметрии: симметрия подобия, когда равенство частей фигуры заменяется их подобием (рис. 11), криволинейная симметрия, статистическая симметрия, вводимая при описании структуры разупорядоченных кристаллов, твёрдых растворов (См. Твёрдые растворы), жидких кристаллов (См. Жидкие кристаллы), и др.

Лит.: Шубников А. В., Копцик В. А., Симметрия в науке и искусстве, 2 изд., М., 1972; Вейль Г., Симметрия, пер. с англ., М., 1968; Федоров Е. С.. Симметрия и структура кристаллов, [М.], 1949; Шубников А. В., Симметрия и антисимметрия конечных фигур, М., 1951.

Б. К. Вайнштейн.

Рис. 4. Cферический вирус (электронно-микроскопический снимок, увеличено).

Рис. 1. а - кристалл кварца: 3 - ось симметрии 3-го порядка, 2x ,2y, 2w - оси второго порядка; б - кристалл водного метасиликата натрия: m - плоскость симметрии.

Рис. 2. Простейшие операции симметрии: а - поворот; б - отражение; в - инверсия; г - скользящее отражение; д - винтовой поворот 4-го порядка.

Рис. 3. Примеры кристаллов, принадлежащих к разным точечным группам или кристаллографическим классам: а - к классу m (одна плоскость симметрии); б - к классу с (один центр симметрии); в - к классу 2 (одна ось симметрии 2-го порядка); г - к классу 6 (одна зеркальная ось 6-го порядка).

Рис. 5. Поверхность, описывающая оптическую активность кристалла кварца; знаки (+) и (-) указывают противоположные направления вращения плоскости поляризации.

Рис. 6. Фигуры, иллюстрирующие предельные группы симметрии.

Рис. 7. Элементарные ячейки кристаллов: а - K2PtCl6; б - CuCl2․2H2O.

Рис. 8. Объекты со спиральной симметрией: а - молекула ДНК; б - трубчатый кристалл белка фосфорилазы (электронномикроскопический снимок, увеличено).

Рис. 9. Распределение магнитных моментов (стрелки) в элементарной ячейке кристалла Cr2O3.

Рис. 10. Фигура, описываемая точечной группой антисимметрии.

Рис. 11. Фигура, обладающая симметрией подобия.

лёд         
  • Лёд [[Байкал]]а
  • Цельсия]], справа — [[Кельвин]]а, ① — жидкая фаза
  • Лёд на реке [[Дон]]
  • водородные связи.]]
  • Лёд в Арктике
  • [[Иглу]]
ВОДА В ТВЁРДОМ АГРЕГАТНОМ СОСТОЯНИИ
Лед; Ледяные кристаллы; Фазы льда; Фазы воды
м.
Замерзшая, перешедшая в твердое состояние вода.
Молекулярный кристалл         
Молекулярный кристаллкристалл, образованный из молекул. Молекулы связаны между собой слабыми ван-дер-ваальсовыми силами, внутри же молекул между атомами действует более прочная ковалентная связь.
ЛЕД         
  • Лёд [[Байкал]]а
  • Цельсия]], справа — [[Кельвин]]а, ① — жидкая фаза
  • Лёд на реке [[Дон]]
  • водородные связи.]]
  • Лёд в Арктике
  • [[Иглу]]
ВОДА В ТВЁРДОМ АГРЕГАТНОМ СОСТОЯНИИ
Лед; Ледяные кристаллы; Фазы льда; Фазы воды
вода в твердом состоянии. Известны 11 кристаллических модификаций льда и аморфный лед. В природе обнаружена только одна форма льда - с плотностью 0,92 г/см3, теплоемкостью 2,09 кДж/(кг·К) при 0 °С, теплотой плавления 324 кДж/кг, которая встречается в виде собственно льда (материкового, плавающего, подземного), снега и инея. На Земле ок. 30 млн. км3 льда. Используется для хранения, охлаждения пищевых. продуктов, получения пресной воды, в медицине.
Молекулярные кристаллы         

кристаллы, образованные из молекул, связанных друг с другом слабыми ван-дер-ваальсовыми силами (см. Межмолекулярное взаимодействие) или водородной связью (См. Водородная связь). Внутри молекул между атомами действует более прочная Ковалентная связь. Фазовые превращения М. к. - плавление, возгонка, полиморфные переходы (см. Полиморфизм) - происходят, как правило, без разрушения отдельных молекул.

Большинство М. к. - кристаллы органических соединений, типичный М. к. - Нафталин. М. к. образуют также некоторые простые вещества (H2, Галогены, N2, O2, S8), бинарные соединения типа H2O, CO2, N2O4, Металлоорганические соединения и некоторые Комплексные соединения. К М. к. относятся и кристаллы полимеров (См. Полимеры), а также кристаллы белков (См. Белки), нуклеиновых кислот (См. Нуклеиновые кислоты). Особым случаем М. к. являются кристаллы отвердевших инертных газов, в которых ван-дер-ваальсовы силы связывают между собой не молекулы, а атомы.

Для типичных М. к. характерны низкие температуры плавления, большие коэффициенты теплового расширения, высокая сжимаемость, малая твёрдость. В обычных условиях большинство М. к. - Диэлектрики. Некоторые М. к., например органические красители, - Полупроводники.

Лит.: Китайгородский А. И., Молекулярные кристаллы, М., 1971; Бокий Г. Б., Кристаллохимия, М., 1971.

П. М. Зоркий.

Лёд         
  • Лёд [[Байкал]]а
  • Цельсия]], справа — [[Кельвин]]а, ① — жидкая фаза
  • Лёд на реке [[Дон]]
  • водородные связи.]]
  • Лёд в Арктике
  • [[Иглу]]
ВОДА В ТВЁРДОМ АГРЕГАТНОМ СОСТОЯНИИ
Лед; Ледяные кристаллы; Фазы льда; Фазы воды

Вода в твёрдом состоянии; известно 10 кристаллических модификаций Л. и аморфный Л. На рис. 1 изображена фазовая диаграмма воды, из которой видно, при каких температурах и давлениях устойчива та или иная модификация. Наиболее изученным является Л. 1 (табл. 1 и 2) - единственная модификация Л., обнаруженная в природе. Л. встречается в природе в виде собственно Л. (материкового, плавающего, подземного и т.д.), а также в виде снега, инея и т.д. Природный Л. обычно значительно чище, чем вода, т.к. растворимость веществ (кроме NH4F) во Л. крайне плохая. Л. может содержать механические примеси - твёрдые частицы, капельки концентрированных растворов, пузырьки газа. Наличием кристалликов соли и капелек рассола объясняется солоноватость морского льда. Общие запасы Л. на Земле около 30 млн. км3. Имеются данные о наличии Л. на планетах Солнечной системы и в кометах. Основные запасы Л. на Земле сосредоточены в полярных странах (главным образом в Антарктиде, где толщина слоя Л. достигает 4 км).

Табл. 1. - Некоторые свойства льда I

--------------------------------------------------------------------------------------------------------------------------------------------------

| Свойство | Значение | Примечание |

|------------------------------------------------------------------------------------------------------------------------------------------------|

| Теплоемкость, кал/(г··°C) | 0,51 (0°C) | Сильно уменьшается с |

| Теплота таяния, кал/г | 79,69 | понижением температуры |

| Теплота парообразования, кал/г | 677 | |

|------------------------------------------------------------------------------------------------------------------------------------------------|

| Коэффициент термического | 9,1·10-5 (0°C) | |

| расширения, 1/°C | | |

|------------------------------------------------------------------------------------------------------------------------------------------------|

| Теплопроводность, кал/(см сек··°C) | 4,99·10-3 | |

|------------------------------------------------------------------------------------------------------------------------------------------------|

| Показатель преломления: | 1,309 (-3°C) | |

| для обыкновенного луча | 1,3104 (-3°C) | |

| для необыкновенного луча | | |

|------------------------------------------------------------------------------------------------------------------------------------------------|

| Удельная электрическая | 10-9 (0°C) | Кажущаяся энергия |

| проводимость, ом-1·см-1 | | активации 11ккал/моль |

|------------------------------------------------------------------------------------------------------------------------------------------------|

| Поверхностная электропроводность, | 10-10 (-11°C) | Кажущаяся энергия |

| ом-1 | | активации 32ккал/моль |

|------------------------------------------------------------------------------------------------------------------------------------------------|

| Модуль Юнга, дин/см | 9·1010 (-5°C) | Поликристаллич. лёд |

|------------------------------------------------------------------------------------------------------------------------------------------------|

| Сопротивление, Мн/м2 : | 2,5 | Поликристаллический лёд |

| раздавливанию | 1,11 | Поликристаллический лёд |

| разрыву | 0,57 | Поликристаллический лёд |

| срезу | | |

|------------------------------------------------------------------------------------------------------------------------------------------------|

| Средняя эффективная вязкость, пз | 1014 | Поликристаллический лёд |

|------------------------------------------------------------------------------------------------------------------------------------------------|

| Показатель степени степенного | 3 | |

| закона течения | | |

|------------------------------------------------------------------------------------------------------------------------------------------------|

| Энергия активации при | 11,44-21,3 | Линейно растет на 0,0361 |

| деформировании и механической | | ккал/(моль·°C) от 0 до 273,16 |

| релаксации, ккал/моль | | К |

--------------------------------------------------------------------------------------------------------------------------------------------------

Примечание. 1 кал/(г․°С)=4,186 кджl ((К); 1 ом-1см-1=100 сим/м; 1 дин/см=10-3 н/м; 1 кал/(см (сек․°С)=418,68 вт/(м (К); 1 пз=10-1 н (сек/м2.

Табл. 2. - Количество, распространение и время жизни льда 1

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Вид льда | Масса | Площадь | Средняя | Скорость | Среднее |

| | | распространения | концен | прироста | время |

| |------------------------------------------------------------------| трация, г/см2 | массы, | жизни, год |

| | г | \% | млн. км2 | \% | | г/год | |

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Ледники | 2,4·1022 | 98,95 | 16,1 | 10,9 | 1,48·105 | 2,5·1018 | 9580 |

| | | | | суши | | | |

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Подземный лёд | 2·1020 | 0,83 | 21 | 14,1 | 9,52·103 | 6·1018 | 30-75 |

| | | | | суши | | | |

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Морской лёд | 3,5·1019 | 0,14 | 26 | 7,2 | 1,34·102 | 3,3·1019 | 1,05 |

| | | | | океана | | | |

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Снежный покров | 1,0·1019 | 0,04 | 72,4 | 14,2 | 14,5 | 2·1019 | 0.3-0,5 |

| | | | | Земли | | | |

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Айсберги | 7,6·1018 | 0,03 | 63,5 | 18,7 | 14,3 | 1,9·1018 | 4,07 |

| | | | | океана | | | |

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Атмосферный лёд | 1,7·1018 | 0,01 | 510,1 | 100 | 3,3·10-1 | 3,9·1020 | 4·10-3 |

| | | | | Земли | | | |

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

В связи с широким распространением воды и Л. на земной поверхности резкое отличие части свойств Л. от свойств др. веществ играет важную роль в природных процессах. Вследствие меньшей, чем у воды, плотности Л. образует на поверхности воды плавучий покров, предохраняющий реки и водоёмы от промерзания до дна. Зависимость между установившейся скоростью течения и напряжением у поликристаллического Л. гиперболическая; при приближённом описании её степенным уравнением показатель степени увеличивается по мере роста напряжения; кроме того, скорость течения прямо пропорциональна энергии активации и обратно пропорциональна абсолютной температуре, так что с понижением температуры Л. приближается к абсолютно твёрдому телу. В среднем при близкой к таянию температуре текучесть Л. в 106 раз выше, чем у горных пород. Благодаря текучести Л. не накопляется беспредельно, а стекает с тех частей земной поверхности, где его выпадает больше, чем стаивает (см. Ледники). Вследствие очень высокой отражательной способности Л. (0,45) и особенно снега (до 0,95) покрытая ими площадь - в среднем за год около 72 млн. км2 в высоких и средних широтах обоих полушарий - получает солнечного тепла на 65\% меньше нормы и является мощным источником охлаждения земной поверхности, чем в значительной мере обусловлена современная широтная климатическая зональность. Летом в полярных областях солнечная радиация больше, чем в экваториальном поясе, тем не менее температура остаётся низкой, т. к. значительная часть поглощаемого тепла затрачивается на таяние Л., имеющего очень высокую теплоту таяния.

Л. II, III и V длительное время сохраняются при атмосферном давлении, если температура не превышает -170°С. При нагревании приблизительно до -150°С они превращаются в кубический Л. (Л. Ic), не показанный на диаграмме, т. к. неизвестно, является ли он стабильной фазой. Др. способ получения Л. Ic - конденсация водяных паров на охлажденную до -120°С подложку. При конденсации паров на более холодной подложке образуется аморфный Л. Обе эти формы Л. могут самопроизвольно переходить в гексагональный Л. I, причём тем скорее, чем выше температура.

Л. IV является метастабильной фазой в зоне устойчивости Л. V. Л. IV легче образуется, а возможно и стабилен, если давлению подвергается тяжёлая вода. Кривая плавления льда VII исследована до давления 20 Гн/м2 (200 тыс. кгс/см2). При этом давлении Л. VII плавится при температуре 400°С. Л. VIII является низкотемпературной упорядоченной формой Л. VII. Л. IX - метастабильная фаза, возникающая при переохлаждении Л. III и по существу представляющая собой низкотемпературную его форму. Вообще явления переохлаждения и метастабильные равновесия очень характерны для фаз, образуемых водой. Некоторые из линий метастабильных равновесий обозначены на диаграмме пунктиром.

Полиморфизм Л. был обнаружен Г. Тамманом (1900) и подробно изучен П. Бриджменом (начиная с 1912). С 60-х гг. фазовая диаграмма воды, полученная Бриджменом, несколько раз дополнялась и уточнялась. В табл. 3 и 4 приведены некоторые данные о структурах модификаций Л. и некоторые их свойства.

Кристаллы всех модификаций Л. построены из молекул воды H2O, соединённых водородными связями в трёхмерный каркас (рис. 2). Каждая молекула участвует в 4 таких связях, направленных к вершинам тетраэдра. В структурах Л. I, Ic, VII и VIII этот тетраэдр правильный, т. е. угол между связями составляет 109°28'. Большая плотность Л. VII и VIII объясняется тем, что их структуры содержат по 2 трёхмерные сетки водородных связей (каждая из которых идентична структуре Л. Ic), вставленные одна в другую. В структурах Л. II, III, V и VI тетраэдры заметно искажены. В структурах Л. VI, VII и VIII можно выделить 2 взаимоперекрещивающиеся системы водородных связей. Данные о положениях протонов в структурах Л. менее определенны, чем атомов кислорода. Можно утверждать, что конфигурация молекулы воды, характерная для пара, сохраняется и в твёрдом состоянии (по-видимому, несколько удлиняются расстояния О - Н вследствие образования водородных связей), а протоны тяготеют к линиям, соединяющим центры атомов кислорода. Т. о. возможны 6 более или менее эквивалентных ориентаций молекул воды относительно их соседей. Часть из них исключается, поскольку нахождение одновременно 2 протонов на одной водородной связи маловероятно, но остаётся достаточная неопределённость в ориентации молекул воды. Она осуществляется в большинстве модификаций Л. - I, III, V, VI и VII (и по-видимому в Ic), так что, по выражению Дж. Бернала, Л. кристалличен в отношении атомов кислорода и стеклообразен в отношении атомов водорода. Во Л. II, VIII и IX молекулы воды ориентационно упорядочены.

Табл. 3. - Некоторые данные о структурах модификаций льда

----------------------------------------------------------------------------------------------------------------------------------------------------

| Модифи | Сингония | Фёдоровская | Длины | Углы О-О-О в |

| кация | | группа | водородных | тетраэдрах |

| | | | связей, | |

|--------------------------------------------------------------------------------------------------------------------------------------------------|

| I | Гексагональная | P63/mmc | 2,76 | 109,5 |

| Ic | Кубическая | F43m | 2,76 | 109,5 |

| II | Тригональная | R3 | 2,75-2,84 | 80-128 |

| III | Тетрагональная | P41212 | 2,76-2,8 | 87-141 |

| V | Моноклинная | A2/a | 2,76-2,87 | 84-135 |

| VI | Тетрагональная | P42/nmc | 2,79-2,82 | 76-128 |

| VII | Кубическая | Im3m | 2,86 | 109,5 |

| VIII | Кубическая | Im3m | 2,86 | 109,5 |

| IX | Тетрагональная | P41212 | 2,76-2,8 | 87-141 |

----------------------------------------------------------------------------------------------------------------------------------------------------

Примечание. 1 A=10-10 м.

Табл. 4. - Плотность и статическая диэлектрическая проницаемость различных льдов

--------------------------------------------------------------------------------------------------------------------------------------

| Модификация | Темп-ра, | Давление, | Плотность, г/см | Диэлектрическая |

| | °С | Мн/м2 | 2 | проницаемость |

|-------------------------------------------------------------------------------------------------------------------------------------|

| I | 0 | 0,1 | 0,92 | 94 |

| Ic | -130 | 0,1 | 0,93 | - |

| II | -35 | 210 | 1,18 | 3,7 |

| III | -22 | 200 | 1,15 | 117 |

| V | -5 | 530 | 1,26 | 144 |

| VI | 15 | 800 | 1,34 | 193 |

| VII | 25 | 2500 | 1,65 | Лёд150 |

| VIII | -50 | 2500 | 1,66 | Лёд3 |

| IX | -110 | 230 | 1,16 | Лёд4 |

--------------------------------------------------------------------------------------------------------------------------------------

Л. в атмосфере, в воде, на земной и водной поверхности и в земной коре оказывает большое влияние на условия обитания и жизнедеятельности растений и животных, на разные виды хозяйственной деятельности человека. Он может вызывать ряд стихийных явлений с вредными и разрушительными последствиями (обледенение летательных аппаратов, судов, сооружений, дорожного полотна и почвы, градобития, метели и снежные заносы, речные заторы и зажоры с наводнениями, ледяные обвалы, разрыв корней растений при образовании слоев Л. в почве и др.). Прогнозирование, обнаружение, предотвращение вредных явлений, борьба с ними и использование Л. в различных целях (снегозадержание, устройство ледяных переправ, изотермических складов, облицовка хранилищ, льдозакладка шахт и т.п.) представляют предмет ряда разделов гидрометеорологических и инженерно-технических знаний (ледотехника, снеготехника, инженерное мерзлотоведение и др.), деятельности специальных служб (ледовая разведка, ледокольный транспорт, снегоуборочная техника, искусственное сбрасывание лавин и т.д.). Для некоторых видов спорта используются катки с искусственным охлаждением, позволяющие проводить соревнования на Л. в тёплое время года и в закрытом помещении. Природный Л. используется для хранения и охлаждения пищевых продуктов, биологических и медицинских препаратов, для чего он специально производится и заготавливается (см. Ледник, Льдопроизводство).

Лит.: Шумский П. А., Основы структурного ледоведения, М., 1955; Паундер Э. Р., Физика льда, пер. с англ., М., 1967; Eisenberg D., Kauzmann W., The structure and properties of water, Oxf., 1969; Fletcher N. H., The chemical physics of ice, Camb., 1970.

Г. Г. Маленков.

Рис. 1. Фазовая диаграмма воды.

Рис. 2. Схема структуры льда I (показаны атомы кислорода и направления водородных связей) в двух проекциях.

Википедия

Габитус кристаллов

Га́битус криста́ллов (лат. habitus — внешность) — наружный вид кристаллов, определяемый преобладающим развитием граней тех или иных простых форм. Примеры габитусов: призматический, бипирамидальный, ромбоэдрический, кубический и др.

Некоторые авторы в минералогии различают габитус и облик кристаллов. При этом облик относят исключительно к внешнему виду минерала — столбчатый, пластинчатый и др., а габитусом называют основные кристаллографические элементы, определяющие форму кристалла, бипирамидальный, ромбоэдрический и т. п. В этом случае минералы одного и того же облика, например столбчатого, могут иметь различный габитус, например дипирамидальный или призматический.

Что такое КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ: ПРИМЕНЕНИЕ КРИСТАЛЛОВ - определение