КРОВЬ: ГРУППЫ КРОВИ - определение. Что такое КРОВЬ: ГРУППЫ КРОВИ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое КРОВЬ: ГРУППЫ КРОВИ - определение

ОПИСАНИЕ ИНДИВИДУАЛЬНЫХ АНТИГЕННЫХ ХАРАКТЕРИСТИК ЭРИТРОЦИТОВ
Группы крови человека; АВ0; Наследование групп крови; Группы крови; Система AB0; AB0
  • Поверхностные антигены эритроцитов и антитела к ним в плазме крови групп крови системы AB0
  • оснований ДНК]] 133 255 175 к паре оснований 133 275 213
  • аллели]] доминантного гена, серым — рецессивного
  • изотоническим раствором]])
  • Сил самообороны Японии]] с указанием группы крови системы AB0
  • Cryoprecipitate}}<!-- гемолизированная, что-то прозрачная?-->
  • Карта группы крови A(II)
  • Карта группы крови B(III)
  • Карта группы крови O(I)
  • военнослужащего]] о группах крови систем AB0 и резус-фактор
Найдено результатов: 349
КРОВЬ: ГРУППЫ КРОВИ      
К статье КРОВЬ
У человека и высших животных на поверхности клеток крови, особенно эритроцитов, имеются генетически обусловленные факторы - т.н. вещества групп крови. Эти факторы имеют огромное значение при переливании крови, поскольку именно они в основном определяют совместимость крови донора и реципиента. Они служат также объектом генетических исследований и используются в судебной медицине (например, при установлении отцовства).
Факторы групп крови - это макромолекулы, относящиеся к классу мукополисахаридов; они присутствуют на поверхности эритроцитов и представляют собой группу особых антигенов, т.н. агглютиногенов. Кроме того, в плазме крови большинства людей содержатся антитела, или агглютинины, реагирующие с определенными агглютиногенами. Такого рода иммунная реакция возникает в случае переливания несовместимой крови. При этом мембраны донорских эритроцитов, несущие определенные агглютиногены, реагируют с агглютининами, присутствующими в плазме реципиента; в результате этого взаимодействия донорские эритроциты агглютинируют, т.е. слипаются друг с другом, так как между ними образуются мостики из антител.
Система АВ0. Основные агглютиногены крови были впервые описаны в 1900 К.Ландштейнером, который обозначил их буквами А и В. Эти два фактора дают четыре группы крови: А, В, АВ (в крови имеются оба фактора) и 0 (оба фактора отсутствуют). В табл. 3 приведены антигены системы АВ0 и соответствующие им изоагглютинины. Эти антитела отсутствуют в крови новорожденных, но появляются уже в младенчестве - возможно, при контакте со сходными антигенами каких-то бактерий; действительно, при содержании экспериментальных животных в стерильных условиях изоагглютинины (т.н. естественные антитела) у них не образуются. Не считая исключительных случаев, большинство антител против факторов эритроцитов, не входящих в систему АВ0, образуется лишь после контакта организма с эритроцитами, несущими эти факторы.
Группы крови АВ0 имеют первостепенное значение при подборе крови для переливания. Если донорская кровь относится к группе А, В или АВ, а у реципиента группа крови 0, то имеющиеся в крови у реципиента антитела (анти-А, анти-В или оба сразу) вызовут агглютинацию донорских эритроцитов и их разрушение (гемолиз). При этом эритроциты теряют гемоглобин и другие вещества, что приводит к тяжелым последствиям для реципиента - шоку, кровотечению и нарушению функции почек. Благодаря современным методам лечения смертность в связи с переливанием несовместимой крови значительно уменьшилась. Точно так же кровь групп А и АВ нельзя переливать больным с группой В, а кровь групп В и АВ - больным с группой А.
Поскольку в случае группы крови 0 эритроциты вообще не несут антигенов и потому не агглютинируют при контакте с анти-А или анти-В антителами, создается впечатление, что кровь группы 0 - универсальная донорская кровь, которую можно переливать любому человеку. Подобное мнение предопределило, в частности, широкое использование этой крови для переливания в военных условиях. Однако такая практика довольно опасна - главным образом потому, что кровь донора и кровь реципиента различаются между собой не только антигенами группы АВ0. Кроме того, сыворотка донорской крови группы 0 (в которой имеются антитела анти-А и анти-В) может привести к агглютинации эритроцитов реципиента, несущих антигены А, В или АВ (именно поэтому переливают обычно не цельную кровь группы 0, а выделенную из нее эритроцитарную массу). По тем же причинам нельзя считать универсальными реципиентами людей с группой АВ.
Согласно статистическим исследованиям, группа 0 - самая распространенная в мире. У индейцев центральных районов Америки она выявляется в 90-95% случаев; однако среди североамериканских индейцев менее 25% имеют группу 0, а 75% - группу А. У эскимосов больше всего распространена группа А, но группа 0 тоже встречается часто. Во всем мире группа В - довольно редкая; она полностью отсутствует во многих племенах американских индейцев и у австралийских аборигенов. Если группа В статистически редкая, то еще реже встречается группа АВ. Только в тех популяциях, где высока частота группы В, распространенность группы AB достигает 10%.
Резус-система. Еще одна важная и весьма сложная система факторов крови - это резус-система (Rh). Ее название происходит от вида обезьян Macacus rhesus, на которых в 1940 К.Ландштейнер и А.Винер проводили свои эксперименты. Они обнаружили, что при введении эритроцитов этой обезьяны кролику у него вырабатываются антитела, вызывающие у части людей агглютинацию эритроцитов вне зависимости от группы крови по системе АВ0. Соответствующая группа крови получила название резус-положительной (Rh+). У остальных людей резус-фактор отсутствует, т.е. их кровь резус-отрицательна (Rh-).
Гены, кодирующие резус-фактор, находятся в трех близко расположенных хромосомных локусах, обозначаемых С или с, D или d, и Е или е. Таким образом, возможно довольно много генотипов, которые определяются различными комбинациями этих локусов (ССDDЕЕ, СсDDее, ссDDЕе и т.д.). Однако на практике термин "резус-положительный" относится к людям, у которых есть хотя бы один локус D (в комбинации DD или Dd), а "резус-отрицательный" - к носителям комбинации dd. Это правило связано с введением в клиническую практику только определенных методов типирования крови. Большинство людей, не относящихся к европеоидной расе (в том числе все жители Океании и австралийские аборигены), - резус-положительны. Жители Азии и американские индейцы имеют в основном генотип cDE или CDe; африканцы и афроамериканцы - главным образом генотип cDe. У европейцев и белых американцев доминирует генотип CDe, причем ок. 15% из них - резус-отрицательны. Резус-система достаточно важна: при переливании резус-положительной донорской крови резус-отрицательным реципиентам у них могут вырабатываться антитела против резус-фактора, и в этом случае при повторном переливании Rh+-крови у таких реципиентов возникает очень опасная реакция гемолиза (разрушения) эритроцитов донорской крови.
Эритробластоз плода (гемолитическая болезнь новорожденных). В ситуации, когда мать - резус-отрицательна, а плод - носитель Rh+, нарушение целостности плаценты при родах приводит к тому, что эритроциты плода проникают в кровоток матери и иммунизируют ее; для материнского организма это равнозначно переливанию резус-положительной крови. Примерно в 10% подобных случаев мать становится иммунизированной, и тогда при повторной беременности (резус-положительным плодом) имеющиеся у нее в крови антирезусные антитела проходят через плаценту и попадают в организм плода, вызывая гемолитическую болезнь.
Специфическое действие материнских антител при этом заболевании состоит в том, что они покрывают собой поверхность эритроцитов плода и тем самым способствуют разрушению этих клеток в селезенке. Возникающая в результате гемолитическая болезнь может быть разной степени тяжести. Ее сопровождает анемия, которая приводит иногда к внутриутробной смерти плода и угрожает жизни новорожденного. Кроме того, развивается желтуха, вызванная накоплением билирубина (этот пигмент образуется из гемоглобина, высвобождающегося в большом количестве при гемолизе). Билирубин может накапливаться в структурах центральной нервной системы и вызывать необратимые ее изменения.
В настоящее время разработана т.н. RhoGAM-вакцина, которая при введении резус-отрицательной женщине в первые 72 ч после родов предупреждает образование антител на резус-положительную кровь. Поэтому при следующей беременности в крови у такой женщины не будет антител, и гемолитическая болезнь у ребенка не разовьется.
Другие системы групп крови. Система MN закодирована в двух генах, что дает три возможных генотипа (MM, MN и NN), которые соответствуют группам крови М, MN и N. Этой системе близкородственна система Ss. Имеется также система Р. В редких случаях названные группы крови оказываются несовместимы, что осложняет подбор крови для переливания. Прочие антигены групп крови (Kell, Duffy, Kidd, Lewis и Lutheran) названы по именам тех людей, у которых они были впервые обнаружены и описаны. Первые три из них могут вызывать осложнения и гемолитическую болезнь при переливании крови; для двух последних таких осложнений не описано. Известны еще некоторые редкие системы групп крови, важные с генетической точки зрения. Среди них можно назвать Diego - систему, практически не встречающуюся у жителей Европы и Западной Африки, но изредка выявляемую у лиц монголоидной расы, за исключением эскимосов.
Относительно недавно обнаружена система Xg, представляющая особый интерес, потому что кодирующий ее ген расположен в Х-хромосоме. Это первая из известных систем групп крови, сцепленная с полом. См. также НАСЛЕДСТВЕННОСТЬ
.
Значение для антропологии и судебной медицины. Из описания систем АВ0 и резус ясно, что группы крови имеют значение для генетических исследований и изучения рас. Они легко определяются, причем у каждого конкретного человека данная группа либо есть, либо ее нет. Важно отметить, что хотя те или иные группы крови встречаются в разных популяциях с разной частотой, нет никаких оснований утверждать, что определенные группы дают какие-либо преимущества. А тот факт, что в крови у представителей разных рас системы групп крови практически одни и те же, делает бессмысленным разделение расовых и этнических групп по крови ("негритянская кровь", "еврейская кровь", "цыганская кровь").
Группы крови имеют важное значение в судебной медицине для установления отцовства. Например, если женщина с группой крови 0 предъявляет мужчине с группой крови В иск, что именно он является отцом ее ребенка, имеющего группу крови А, суд должен признать мужчину невиновным, так как его отцовство генетически невозможно. На основании данных о группах крови по системам АВ0, Rh и MN у предполагаемого отца, матери и ребенка, удается оправдать больше половины мужчин (51%), ложно обвиненных в отцовстве.
группа крови         
совокупность нормальных иммуногенетических признаков крови - изоантигенная структура эритроцитов и специфичность естественных антиэритроцитарных антител, позволяющая объединять людей в определенную группу.
ГРУППЫ КРОВИ         
иммуногенетические признаки крови у особей одного биологического вида. Особи с одной группой крови отличаются от особей с другой группой крови наличием или отсутствием у них определенных антигенов в эритроцитах, лейкоцитах, плазме крови, во многих тканях и биологических жидкостях. Определяют группы крови по реакции гемагглютинации (склеивания эритроцитов). Группы крови имеются почти у всех видов теплокровных животных и у человека, у которого наиболее известны 4 группы крови. Формируются в раннем периоде эмбрионального развития. Переливание крови проводят с учетом совместимости группы крови. Кровь животных, независимо от ее групповой принадлежности, несовместима с кровью человека.
Группы крови         

разделение индивидуумов одного и того же биологического вида (люди, обезьяны, лошади и др.) по особенностям крови, в основе которых лежат различия в строении эритроцитарных белков - гликопротеидов, обусловленные разными типами биосинтеза. У людей впервые три Г. к. были обнаружены в 1900 австр. врачом К. Ландштейнером. Вскоре была выделена и четвёртая. Учение об основных Г. к. оформлено чеш. учёным Я. Янским (1907), давшим Г. к. цифровое обозначение. В 1928 гигиенической комиссией Лиги Наций утверждена буквенная номенклатура Г. к., используемая во всём мире (система AB0). Принадлежность к той или иной Г. к. определяют содержащиеся в эритроцитах факторы А и В (антигены, или агглютиногены) и обнаруживаемые в плазме крови факторы α и β (антитела, или агглютинины). У одной группы людей эритроциты не содержат агглютиногенов А и В, а в сыворотке обнаруживаются агглютинины α и β. Эта группа считается I, или 0αβ. У людей с кровью II группы в эритроцитах содержится агглютиноген А, а в плазме агглютинин β; буквенное обозначение Аβ. В эритроцитах III Г. к. содержится агглютиноген В, а в плазме агглютинин α; буквенное обозначение Вα. IV Г. к., содержащая в эритроцитах агглютиногены А и В, агглютининов в плазме не содержит, её обозначение AB0. Групповые антигены А и В содержатся также в лейкоцитах, тромбоцитах, сперматозоидах, в нормальных и опухолевых тканях, в слюне, в желудочном соке, жёлчи, в околоплодных водах.

При взаимодействии одноимённых агглютиногенов и агглютининов (например, А+ α, В+β) происходит склеивание эритроцитов (Гемагглютинация) с их последующим Гемолизом. Такое взаимодействие обусловливает групповую несовместимость; оно возможно только при переливании иногруппной крови.

По мере исследования изоантигенных и изосерологических закономерностей, определяющих разделение людей по Г. к., были открыты новые изоантигенные признаки. Выяснено, что Г. к. Aβ подразделяется на A1 (88\% людей этой группы) - эритроциты обладают высокой способностью агглютинироваться сывороткой, содержащей α-агглютинин, и A2 (12\% людей) - эритроциты агглютинируются лишь при применении высокоактивных сывороток. Найдены и др. подгруппы (A3, A4, A5, Am, A0, Ax, Ау, Ag), встречающиеся весьма редко: 1 на 1000 чел. Групповое антигенное вещество В обладает большей однородностью. В сыворотке некоторых людей иногда встречаются добавочные изоагглютинины, например у людей с Г. к. A1 и A1B в некоторых случаях обнаруживают агглютинин α2 , реагирующий с эритроцитами группы A2 и группы 0. В крови людей обнаружены и др. антигены, которые на основании генетических и иммунологических особенностей объединяют в системы: MNP и др. Наибольшее клиническое значение после АВ0-системы имеет резус-система (см. Резус-фактор), несколько меньшее - Келл-система (фактор К) и др. У Келл-отрицательных субъектов антитела к К-фактору образуются после первого переливания крови.

Групповая принадлежность крови начинает выявляться уже в утробном периоде развития человека и не меняется на протяжении всей его жизни. Г. к. человека (и животных) определяются наследствеными факторами (аллельными генами). Ребёнку передаётся один фактор (А или В ) от отца и один от матери, причём каждый из двух факторов, имеющихся у родителей, может быть передан с равной вероятностью (наследование по Менделю). Т. о., у родителей с первой Г. к. (00 и 00) ребёнок также будет иметь первую Г. к. У родителей, имеющих факторы A0 (II группы) и B0 (III группы), может быть ребёнок с любой из четырёх Г. к. (рис. 1).

Существование эритроцитарных антигенов системы AB0 обусловлено действием одной группы аллельных генов. Система антигенов резус-фактора передаётся тремя разными группами генов (Cc, Dd, Ee). При наличии доминантных генов С, D, Е происходит синтез соответствующих эритроцитарных антигенов у резус-положительных лиц. Если организм унаследовал два рецессивных гена (например, dd), то он резус-отрицателен по соответствующему антигену. У резус-положительного отца, обладающего двойным набором доминантных генов (DD), и резус-отрицательной матери (dd) плод во всех случаях будет резус-положителен (Dd); кровь его не совместима с кровью матери по эритроцитарным антигенам. У резус-положительного отца, обладающего одним доминантным и одним рецессивным геном (Dd), и резус-отрицательной матери (dd) плод может быть как резус-положительным (DD), так и резус-отрицательным (dd). При повторных рождениях D-peзус-положительных детей d-peзус-отрицательной матерью она может иммунизироваться против резус-фактора и её антитела могут вызвать гемолитическую болезнь новорождённых (См. Гемолитическая болезнь новорождённых). Резус-несовместимость двух лиц может быть обусловлена различием по каждому из трёх факторов - С, D, Е, а также по двум или трём этим факторам. Все три фактора всегда наследуются вместе (сцепленные гены), т. о. организм получает по три фактора от обоих родителей, но часть из них может быть доминантна, часть - рецессивна. В небольшом проценте случаев может наблюдаться гемолитическая болезнь новорождённых при несовместимости крови родителей по эритроцитарным антигенам системы AB0 (в частности, мать первой Г. к., отец второй Г. к.).

Ряд систем эритроцитарных антигенов человека - Р, MN, Келл, Льюис и др. - обусловлен существованием нескольких групп аллельных генов. Закономерности наследования во всех этих системах примерно таковы же, как в AB0. Эритроцитарные антигены одной системы наследуются независимо от эритроцитарных антигенов др. систем; эритроциты человека могут обладать набором антигенов многих систем или только некоторых из них. Разнояйцевые близнецы человека (и детёныши многоплодных животных) могут иметь различные сочетания родительских факторов Г. к.

Закономерности наследования Г. к. используют в судебной медицине в вопросах установления спорного отцовства, материнства и подмены детей.

Исследование распространённости тех или иных эритроцитарных антигенов у какой-либо народности или этнографической группы может дать сведения о её происхождении и исторических контактах с др. народами.

Кровь всех Г.к. качественно равноценна, но групповые различия должны обязательно учитываться при переливании крови (См. Переливание крови) и пересадках тканей и органов. Совместимость донора и реципиента по Г. к. - необходимое условие успешной трансплантации (См. Трансплантация).

Определение Г. к. производится смешиванием (на предметном стекле) стандартных сывороток с кровью, подлежащей исследованию. Испытуемая кровь относится к той группе, с сывороткой которой не произошла агглютинация. Если агглютинация произошла во всех четырёх каплях, то испытуемая кровь AB (IV) группы (рис. 2). Каждому человеку можно переливать кровь одноимённой или 0 (I) группы. Кровь 0 (I) группы можно переливать реципиентам всех групп, т. к. в группе 0 (I) нет антигенов-агглютиногенов и потому агглютинины реципиента ни с чем не соединяются и реакции агглютинации не происходит. Доноров 0 (I) группы называют "универсальными". Людям с кровью AB (IV) группы возможно переливание крови любой группы. У реципиентов AB (0) нет агглютининов, поэтому реакция ни с одним агглютиногеном, даже чужой группы, не происходит. Идеально совместимой для реципиента является кровь той же группы, т. к. у людей с Г. к. A1 и A1B, содержащей высокоактивный агглютинин α2, могут возникнуть тяжёлые реакции на переливание крови A2 или 0(I) группы. При переливании крови 0 (I) группы могут возникать тяжёлые осложнения, если переливают большую дозу крови при высоком титре αβ-антител в крови донора: агглютинины перелитой 0(I) группы могут склеить эритроциты реципиента, в которых есть соответствующие агглютиногены. Антигенно-серологические вещества, характеризующие специфичность группового биохимического разделения крови у человека, были в той или иной степени обнаружены у ряда животных. Однако у животных естественные антитела против антигенов Г. к. обнаруживаются не регулярно и в низких титрах. Поэтому отдельные эритроцитарные антигены обнаруживаются с помощью сывороток, получаемых при иммунизации животных того же или др. видов. Наиболее полно изучены Г. к. свиней, крупного рогатого скота, лошадей, овец; исследованы также Г. к. у кур, собак, кошек, кроликов и некоторых др. видов. Антигены и антигенные системы Г. к. животных многочисленны. Описано не менее 12 систем эритроцитарных антигенов крупного рогатого скота и более 100 составляющих их факторов. Разнообразные сочетания антигенов создают десятки и сотни разновидностей Г. к. у животных одного вида. При длительной селекции в пределах одной породы разнообразие Г. к. уменьшается. Определение частоты встречаемости различных эритроцитарных антигенов служит одной из характеристик породы. Определение Г. к. применяют в животноводческой практике для линейного разведения, определения отцовства, установления структуры породы, анализа генеалогических и заводских линий, проверки породы при импорте и экспорте. Однако кровь животных, независимо от её групповой принадлежности, абсолютно не совместима с кровью человека.

Лит.:Руководство по применению крови и кровезаменителей, под ред. А. Н. Филатова, Л., 1965; Косяков П. Н., Иммунология изоантигенов и изоантнтел, М., 1965; Тихонов В. Н., Генетические системы групп крови животных, Новосиб., 1966; Эфроимсон В. П., Введение в медицинскую генетику, 2 изд., М., 1968; Prokop О., Uhlenbruck G., Lehrbuch der menschlichen Blut und Serumgruppen, 2 Aufl., Lpz., 1966 (библ.); RaceR. R., Sanger R., Blood groups in man, 4 ed., Oxf., [1962].

В. А. Ляшенко, А. М. Полянская.

Рис. 1. Варианты групп крови, наблюдаемые в потомстве брака супругов с генотипом А0 при наличии у др. супруга различных генотипов системы АВ0 (римские цифры обозначают группу крови при данном сочетании факторов; в \% обозначена вероятность появления у потомков данной группы крови).

Рис. 2. Определение групп крови при помощи стандартных сывороток.

Группа крови         
Гру́ппа кро́ви — описание индивидуальных антигенных характеристик эритроцитов, определяемое с помощью методов идентификации специфических групп углеводов и белков, включённых в мембраны эритроцитов.
свертывание крови         
  • Классическая схема свёртывания крови по Моравицу (1905 год)
  • факторов свёртывания крови]]
  • Фибриновый сгусток, полученный путём добавления тромбина в цельную кровь. Сканирующая электронная микроскопия
Коагуляция (гематология); Свертывание крови; Сворачиваемость крови; Гемокоагуляция; Сворачивание крови; Гемостазиология; Свёртываемость крови; Свертываемость крови
превращение крови из жидкости в эластичный сгусток в результате перехода фибриногена в нерастворимый фибрин, который, полимеризуясь, образует фибриллярную основу сгустка.
Свёртывание крови         
  • Классическая схема свёртывания крови по Моравицу (1905 год)
  • факторов свёртывания крови]]
  • Фибриновый сгусток, полученный путём добавления тромбина в цельную кровь. Сканирующая электронная микроскопия
Коагуляция (гематология); Свертывание крови; Сворачиваемость крови; Гемокоагуляция; Сворачивание крови; Гемостазиология; Свёртываемость крови; Свертываемость крови
Свёртывание крови (гемокоагуляция) — это важнейший этап работы системы гемостаза, отвечающий за остановку кровопотери при повреждении сосудистой системы организма. Совокупность взаимодействующих между собой факторов свёртывания крови образует систему свёртывания крови.
СВЕРТЫВАНИЕ КРОВИ         
  • Классическая схема свёртывания крови по Моравицу (1905 год)
  • факторов свёртывания крови]]
  • Фибриновый сгусток, полученный путём добавления тромбина в цельную кровь. Сканирующая электронная микроскопия
Коагуляция (гематология); Свертывание крови; Сворачиваемость крови; Гемокоагуляция; Сворачивание крови; Гемостазиология; Свёртываемость крови; Свертываемость крови
превращение жидкой крови в эластичный сгусток в результате перехода растворенного в плазме крови белка фибриногена в нерастворимый фибрин при истечении крови из поврежденного сосуда. Фибрин, полимеризуясь, образует тонкие нити, удерживающие кровяные тельца; таким образом, формируется сгусток, закупоривающий пораженное место сосуда. Время свертывания крови у разных организмов сильно варьирует (у человека 5-12 мин).
Свёртывание крови         
  • Классическая схема свёртывания крови по Моравицу (1905 год)
  • факторов свёртывания крови]]
  • Фибриновый сгусток, полученный путём добавления тромбина в цельную кровь. Сканирующая электронная микроскопия
Коагуляция (гематология); Свертывание крови; Сворачиваемость крови; Гемокоагуляция; Сворачивание крови; Гемостазиология; Свёртываемость крови; Свертываемость крови

превращение жидкой крови в эластичный сгусток; защитная реакция организма человека и животных, предотвращающая потерю крови. С. к. протекает как последовательность биохимических реакций, совершающихся при участии факторов свёртывания крови (ФСК) - ряда белков плазмы и ионов Ca2+. ФСК обозначают римскими цифрами: I - Фибриноген, II - Протромбин, III - Тромбопластин, IV - кальций, V и VI - соответственно плазменный и сывороточный акцелераторы-глобулины, VII - конвертин, VIII - антигемофильный глобулин А, IX - антигемофильный глобулин В (т. н. Кристмас-фактор), Х - Стюарт - Проувер-фактор (аутопротромбин С, тромботропин), XI - плазменный предшественник тромбопластина, XII - фактор Хагемана, XIII - фибрин-стабилизирующий фактор (фибринолигаза). Ряд компонентов системы С. к. содержится в форменных элементах крови. Так, в тромбоцитах (См. Тромбоциты) находятся фактор 3 кровяных пластинок (предшественник тромбопластина), аналоги факторов V и XIII, фибриногена и др. Ведущие реакции С. к., протекающие с участием ферментов: образование активного тромбопластина, превращение протромбина в Тромбин; превращение фибриногена в Фибрин; стабилизация фибрина. Основы ферментативной теории С. к. были предложены профессором Юрьевского (ныне Тартуского) университета А. Шмидтом (работы 1872-95). В дальнейшем было установлено, что первая стадия С. к. осуществляется как "внутренней" системой С. к. (тромбопластин образуется из свёртывающих факторов плазмы крови и фактора 3 из разрушающихся тромбоцитов), так и "внешней" (тромбопластин образуется при участии тканевой среды, выделяющейся в результате повреждения тканей) системой С. к. На основе экспериментальных и клинических данных был предложен ряд современных схем С. к., в том числе каскадная схема английского учёного Р. Макферлана (1965-66). Согласно этой схеме, внутренний процесс С. к. начинается с активации фактора XII и превращения его в фактор XIIa. Активация осуществляется при соприкосновении этого белка со смачиваемой поверхностью, при взаимодействии с хиломикронами (липопротеидными частицами крови) или при появлении в кровотоке избытка адреналина, а также при некоторых других условиях. Фактор XIIa вызывает ряд последовательных реакций, в которые вовлекаются присутствующие в плазме крови факторы от XI до V включительно. В итоге образуется кровяной тромбопластин, или протромбиназа.

При проникновении в кровь тканевого предшественника (внешний путь С. к.) активный тромбопластин образуется при участии плазменных факторов V, VII и Х и ионов Ca2+. Кровяная или тканевая протромбиназа осуществляет превращение протромбина (фактор II) в фермент тромбин (фактор IIa). Последний, отторгая от фибриногена пептидные фрагменты, превращает его в фибрин-мономер. Нестабилизированный (растворимый в мочевине и некоторых кислотах) фибрин подвергается ферментативной стабилизации фактором Xllla в присутствии ионов Ca2+. В результате возникает нерастворимый фибрин-полимер, представляющий собой основу кровяного сгустка, или Тромба. Cxeмa Макферлана обоснована экспериментально, однако в ней не учтено значение присутствующих в крови естественных антикоагулянтов (См. Антикоагулянты), а также физиологической регуляции жидкого состояния крови и её свёртывания. У организмов разных видов время С. к. сильно варьирует. Кровь человека, извлечённая из сосудистого русла, в норме свёртывается за 5-12 мин (для регистрации времени С. к. и нарушений С. к. применяется прибор тромбоэластограф). При многих заболеваниях процесс С. к. замедляется, что часто бывает обусловлено недостатком (приобретённым или наследственным) в организме одного или нескольких ФСК. Так, при неусвоении витамина К возникающие кровотечения обусловлены нарушением биосинтеза II, VII, IX и Х ФСК. Тот же эффект может возникнуть при введении в организм избыточных доз антикоагулянтов непрямого действия - антагонистов витамина К, например дикумарина и его производных. Пример врождённого заболевания - недостаток фактора VIII (Гемофилия А), наследование которого связано с передачей женской половой хромосомы (См. Половые хромосомы). Подобное же заболевание может быть обусловлено накоплением образующихся в организме антагонистов фактора VIII или нарушением структуры этого белка. Различные варианты наследственной недостаточности или дефекты в молекулярной структуре известны почти для всех плазменных ФСК. Нарушения регуляции жидкого состояния крови и её свёртывания приходят также к тромбообразованию, т. е. возникновению и стабилизации сгустков крови в сосудистом русле. Возникновение тромба нельзя объяснить только повышением или усилением процесса С. к. Причиной подобных патологических состояний может быть также локальное или общее понижение в организме больного функции противосвёртывающей системы, обеспечивающей регуляцию жидкого состояния крови (см. Тромбоз). Сочетание явлений рассеянного тромбоза и геморрагии может быть обусловлено нарушением регуляторных взаимоотношений свёртывающей и противосвёртывающей систем.

Лит.: Кудряшов Б. А., Проблема регуляции жидкого состояния крови и взаимоотношения свёртывающей, фибринолитической и противосвёртывающей системы, "Успехи физиологических наук", 1970, т. 1, №4; его же, Биологические проблемы регуляции жидкого состояния крови и её свёртывания, М., 1975; Schmidt A., Weitere Beiträge zur Blutlehre, Wiesbaden, 1895; Macfarlane R. G., The basis of the cascade hypothesis of blood clotting, "Thrombosis et diathesis haemorrhagica", 1966, v. 15, № 3/4; Laki К., Our ancient heritage in blood clotting and some of its consequences, "Annals of the New York Academy of Sciences", 1972, v. 202; Owren P. A., Stormorken H., The mechanism of blood coagulation, "Reviews of Physiology", 1973, v. 68.

Б. А. Кудряшов.

Схема к ст. Свёртывание крови.

Принц крови         
ЗАКОНОРОЖДЕННЫЙ ПОТОМОК В МУЖСКОМ КОЛЕНЕ ФРАНЦУЗСКИХ КОРОЛЕЙ ДОМА КАПЕТА
Принцы крови
Принц (королевской) крови () — законорожденный потомок в мужском колене французских королей дома Капета, который по салическому закону потенциально мог унаследовать престол. Титул впервые появился в XIV веке и вошёл в широкое употребление в XVI веке для обозначения потомков Людовика Святого по мужской линии.

Википедия

Группа крови

Гру́ппа кро́ви — описание индивидуальных антигенных характеристик эритроцитов, определяемое с помощью методов идентификации специфических групп углеводов и белков, включённых в мембраны эритроцитов.

У человека открыто несколько систем антигенов в разных группах крови. Группы крови различают как у животных, так и у людей.

Что такое КРОВЬ: ГРУППЫ КРОВИ - определение