обратимый круговой процесс, в котором совершается превращение теплоты в работу (или работы в теплоту). К. ц. состоит из последовательно чередующихся двух изотермических и двух адиабатных процессов. Впервые рассмотрен французским учёным Н. Л. С. Карно (1824) как идеальный рабочий цикл теплового двигателя. Превращение теплоты в работу сопровождается переносом рабочим телом двигателя определённого количества теплоты от более нагретого тела (нагревателя) к менее нагретому (холодильнику).
К. ц. осуществляется следующим образом: рабочее тело (например, пар в цилиндре под поршнем) при температуре T1 приводится в соприкосновение с нагревателем, имеющим постоянную температуру T1, и изотермически получает от него количество теплоты δQ1 (при этом пар расширяется и совершает работу). На рис. 1 этот процесс изображен отрезком изотермы AB. Затем рабочее тело, расширяясь адиабатически (по адиабате BC), охлаждается до температуры T2. При этой температуре, сжимаясь изотермически (отрезок CD), рабочее тело отдаёт количество теплоты δQ2 холодильнику с температурой T2. Завершается К. ц. адиабатным процессом (DA на рис. 1), возвращающим рабочее тело в исходное термодинамическое состояние. При постоянной разности температур (T1 - T2) между нагревателем и холодильником рабочее тело совершает за один К. ц. работу
Эта работа численно равна площади ABCD (рис. 1), ограниченной отрезками изотерм и адиабат, образующих К. ц.
К. ц. обратим, и его можно осуществить в обратной последовательности (в направлении ADCBA). При этом количество теплоты δQ2 отбирается у холодильника и вместе с затраченной работой δА (превращенной в теплоту) передаётся нагревателю. Тепловой двигатель работает в этом режиме как идеальная холодильная машина.
К. ц. имеет наивысший кпд η = δA/δQ1 = (T1 - T2)/T1 среди всех возможных циклов, осуществляемых в одном и том же температурном интервале (T1 - T2). В этом смысле кпд К. ц. служит мерой эффективности др. рабочих циклов.
Исторически К. ц. сыграл важную роль в развитии термодинамики и теплотехники. С его помощью была доказана эквивалентность формулировок Р.
Клаузиуса и У.
Томсона (Кельвина) второго начала термодинамики (См.
Второе начало термодинамики)
, К. ц. был использован для определения абсолютной термодинамической шкалы температур (см.
Температурные шкалы)
, К. ц. часто использовался также для вывода различных термодинамических соотношений (например, Клапейрона - Клаузиуса уравнения (См.
Клапейрона - Клаузиуса уравнение)).
Лит.: Ферми Э., Термодинамика, пер. с англ., Хар.. 1969; Путилов К. А., Термодинамика, М., 1971.
Рис. 1. Цикл Карно на диаграмме р - V (давление - объём). δQ1 - количество теплоты, получаемой рабочим телом от нагревателя, δQ2 - количество теплоты, отдаваемой им холодильнику. Площадь ABCD численно равна работе цикла Карно.
Рис. 2. Схема работы идеальной тепловой машины, работающей по циклу Карно: 1. От нагревателя Н поступает теплота δQ1, газ под поршнем изотермически расширяется (по линии AB, рис. 1). 2. Газ изолирован от нагревателя и холодильника и адиабатически расширяется (по линии BC). 3. Газ изотермически (при Т = Т2) сжимается (по линии CD) и отдаёт теплоту δQ2 холодильнику X. 4. Газ изолирован и адиабатически сжимается (по линии DA).