Касательная - определение. Что такое Касательная
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Касательная - определение

Касательная; Уравнение касательной; Геометрический смысл производной; Полукасательная; Касательная к кривой
  • Отрезки касательных
Найдено результатов: 34
Касательная         

к кривой линии, предельное положение секущей. К. определяется так. Пусть М - точка кривой L (рис. 1). Выберем на L вторую точку M' и проведём прямую MM'. Будем считать М неподвижной, а точку M' приближать к М по кривой L. Если при неограниченном приближении M' к М прямая MM' стремится к одному определённому положению MT, то MT называется касательной к кривой L в точке М. Не у всякой непрерывной кривой имеются К., поскольку прямая MM' может не стремиться к предельному положению или может стремиться к двум разным предельным положениям, когда M' стремится к М с разных сторон от М (рис. 2). Встречающиеся в элементарной геометрии кривые имеют вполне определённую К. во всех точках, кроме некоторого числа "особых" точек. Если кривая на плоскости в прямоугольных координатах определяется уравнением у = f (x) и f (х) дифференцируема в точке x0, то угловой коэффициент К. в точке М с абсциссой x0 равен значению производной f'(x0) в точке x0, уравнение К. в этой точке имеет вид:

у - f (x0) = f ' (х0)(х - x0).

Касательной (прямой) к поверхности S в точке М называют любую прямую, проходящую через точку М и лежащую в касательной плоскости (См. Касательная плоскость) к S в точке М.

Рис. 1 к ст. Касательная.

Рис. 2 к ст. Касательная.

Касательная         
Касательная - прямая, с которою стремится совпасть секущая,проведенная через две точки на произвольной кривой, по мере сближенияэтих точек. Математическая теория К. имеет весьма важное значение.Точка, через которую к кривой линии проведена К., называется точкойкасания.
касательная         
КАС'АТЕЛЬНАЯ, касательной, ·жен. (мат.). Прямая линия, имеющая одну общую точку с кривой. Провести касательную к кругу.
КАСАТЕЛЬНАЯ         
прямая к кривой L в точке M , предельное положение (на рисунке MT), к которому стремится секущая ММ? при приближении точки М? к точке М.
касательная         
ж.
Прямая линия, имеющая с кривой одну общую точку, но не пересекающая ее (в математике).
Касательная прямая         
Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.
Касательная плоскость         
  • Эудженио Бельтрами]] (1835—1899)
  • Катеноид
  • [[Эллипсоид]], поверхность второго порядка
  • Поверхности с отрицательной (слева), нулевой (в центре) и положительной (справа) кривизной.
  • Поверхности с постоянной отрицательной, нулевой и положительной кривизной Гаусса
  • Геликоид
  • Лента Мёбиуса.
  • Однолистный [[гиперболоид]], являющийся линейчатой поверхностью в двух различных направлениях.
  • Координатная сетка на сфере
  • Векторы нормали в точках поверхности
  • ''z''}}.
  • Касательная плоскость в точке поверхности.
ДВУМЕРНОЕ МНОГООБРАЗИЕ
Простой кусок поверхности; Поверхности; Касательная плоскость; Теория поверхностей; Внутренняя геометрия; Внутренняя геометрия поверхности; Внутренняя геометрия поверхностей; Нормальное сечение; Поверхностей теория; Односторонняя поверхность; Поверхность (топология)

к поверхности S в точке М, плоскость, проходящая через точку М и характеризующаяся тем свойством, что расстояние от этой плоскости до переменной точки M' поверхности S при стремлении M' к М является бесконечно малым по сравнению с расстоянием MM'. Если поверхность S задана уравнением z = f (x, у), то уравнение К. п. в точке (x0, y0, z0), где z0 = f (x0, y0), имеет вид:

z - z0 = A (x - x0) + В (у - у0)

в том и только том случае, когда функция f (x, у) имеет в точке (x0, y0) полный дифференциал. В этом случае А и В суть значения частных производных и в точке (x0, y0) (см. Дифференциальное исчисление).

КАСАТЕЛЬНАЯ ПЛОСКОСТЬ         
  • Эудженио Бельтрами]] (1835—1899)
  • Катеноид
  • [[Эллипсоид]], поверхность второго порядка
  • Поверхности с отрицательной (слева), нулевой (в центре) и положительной (справа) кривизной.
  • Поверхности с постоянной отрицательной, нулевой и положительной кривизной Гаусса
  • Геликоид
  • Лента Мёбиуса.
  • Однолистный [[гиперболоид]], являющийся линейчатой поверхностью в двух различных направлениях.
  • Координатная сетка на сфере
  • Векторы нормали в точках поверхности
  • ''z''}}.
  • Касательная плоскость в точке поверхности.
ДВУМЕРНОЕ МНОГООБРАЗИЕ
Простой кусок поверхности; Поверхности; Касательная плоскость; Теория поверхностей; Внутренняя геометрия; Внутренняя геометрия поверхности; Внутренняя геометрия поверхностей; Нормальное сечение; Поверхностей теория; Односторонняя поверхность; Поверхность (топология)
к поверхности в точке М , плоскость, в которой расположены все касательные к кривым в точке М, проведенным на поверхности через М.
касательно      
предлог разг.
с род. пад. Относительно кого-л., чего-л.
касательный      
прил. устар.
Связанный с кем-л., чем-л., касающийся кого-л., чего-л.

Википедия

Касательная прямая

Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.