Квантование пространственное - определение. Что такое Квантование пространственное
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Квантование пространственное - определение

Квантование вторичное; Каноническое квантование
Найдено результатов: 22
Квантование пространственное      

в квантовой механике, дискретность возможных пространственных ориентаций момента количества движения атома (или др. частицы или системы частиц) относительно любой произвольно выбранной оси (оси z). К. п. проявляется в том, что проекция Мг момента М на эту ось может принимать только дискретные значения, равные целому (0, 1, 2,...) или полуцелому (1/2, 3/2,5/2,...) числу m, помноженному на Планка постоянную (См. Планка постоянная) ħ, Ml = mħ. Две другие проекции момента Mx и Му остаются при этом неопределёнными, т. к., согласно основному положению квантовой механики, одновременно точные значения могут иметь лишь величина момента и одна из его проекций. Для орбитального момента количества движения m (ml) может принимать значения 0, ± 1, ± 2,... ± l, где l = 0, 1, 2... определяет квадрат момента Ml (т. е. его абсолютную величину): . Для полного момента количества движения М (орбитального плюс спинового) m (ml) принимает значения с интервалом в 1 от - j до + j, где j определяет величину полного момента: и может быть целым или полуцелым числом.

Если атом помещается во внешнее магнитное поле H, то появляется выделенное направление в пространстве - направление поля (которое и принимают за ось z). В этом случае К. п. приводит к квантованию проекции μн магнитного момента атома μ на направление поля, т.к. магнитный момент пропорционален механическому моменту количества движения (отсюда название m - "магнитное квантовое число"). Это приводит к расщеплению уровней энергии атома в магнитном поле вследствие того, что к энергии атома добавляется энергия его магнитного взаимодействия с полем, равная - mHH (см. Зеемана эффект).

В. И. Григорьев.

Вторичное квантование         
Втори́чное квантова́ние (каноническое квантование)Термин «вторичное квантование» в англоязычной литературе считается устаревшим и в последнее время заменяется термином «каноническое квантование». Термин «каноническое» подчёркивает важное соответствие между квантовыми операторами и коммутаторами квантовой механики, и каноническими координатой и импульсом и скобкой Пуассона классической механики.
Квантование вторичное         

метод, применяемый в квантовой механике (См. Квантовая механика) и квантовой теории поля (См. Квантовая теория поля) для исследования систем, состоящих из многих или из бесконечного числа частиц (или квазичастиц (См. Квазичастицы)). В этом методе состояние квантовой системы описывается при помощи т. н. чисел заполнения - величин, характеризующих среднее число частиц системы, находящихся в каждом из возможных состояний.

Метод К. в. особенно важен в квантовой теории поля в тех случаях, когда число частиц в данной физической системе не постоянно, а может меняться при различных происходящих в системе процессах. Поэтому важнейшей областью применения метода К. в. является квантовая теория излучения, квантовая теория элементарных частиц (См. Элементарные частицы) и систем различных квазичастиц. В теории излучения рассматриваются системы, содержащие световые кванты (фотоны), число которых меняется в процессах испускания, поглощения, рассеяния. В теории элементарных частиц необходимость применения метода К. в. связана с возможностью взаимных превращений частиц; таковы, например, процессы превращения электронов и позитронов в фотоны и обратный процесс (см. Аннигиляция и рождение пар). Наиболее эффективен метод К. в. в квантовой электродинамике - квантовой теории электромагнитных процессов, а также в теории твёрдого тела (См. Твёрдое тело), базирующейся на представлении о квазичастицах. Менее эффективно применение К. в. для описания взаимных превращений частиц, обусловленных неэлектромагнитными взаимодействиями.

В математическом аппарате К. в. Волновая функция системы рассматривается как функция чисел заполнения. При этом основную роль играют т. н. Операторы, "рождения" и "уничтожения" частиц. Оператор уничтожения - это оператор, под действием которого волновая функция какого-либо состояния данной физической системы превращается в волновую функцию другого состояния с числом частиц на единицу меньше. Аналогично, оператор рождения увеличивает число частиц в этом состоянии на единицу. Принципиальная сторона метода К. в. не зависит от того, подчиняются ли частицы, из которых состоит система, Бозе - Эйнштейна статистике (См. Бозе - Эйнштейна статистика) (например, фотоны) или Ферми - Дирака статистике (См. Ферми - Дирака статистика) (например, электроны и позитроны). Конкретный же математический аппарат метода, в том числе основные свойства операторов рождения и уничтожения, в этих случаях существенно различен вследствие того, что в статистике Бозе - Эйнштейна число частиц, которое может находиться в одном и том же состоянии, ничем не ограничено (так что числа заполнения могут принимать произвольные значения), а в статистике Ферми - Дирака в каждом состоянии может находиться не более одной частицы (и числа заполнения могут иметь лишь значения 0 и 1).

Метод К. в. был впервые развит английским физиком П. Дираком (1927) в его теории излучения и далее разработан сов. физиком В. А. Фоком (1932). Термин "К. в." появился вследствие того, что этот метод возник позже "обычного", или "первичного", квантования, целью которого было выявить волновые свойства частиц. Необходимость последовательного учёта и корпускулярных свойств полей (поскольку Корпускулярно-волновой дуализм присущ всем видам материи) привела к возникновению методов К. в.

Лит. см. при ст. Квантовая теория поля.

Квантование (обработка сигналов)         
  • [[Цифровой сигнал]]
  • Неквантованный сигнал с дискретным временем
Квантова́ние () — в обработке сигналов — разбиение диапазона отсчётных значений сигнала на конечное число уровней и округление этих значений до одного из двух ближайших к ним уровней. При этом значение сигнала может округляться либо до ближайшего уровня, либо до меньшего или большего из ближайших уровней в зависимости от способа кодирования. Такое квантование называется скалярным. Существует также векторное квантование — разбиение пространства возможных значений векторной величины на конечное число областей и замена этих значений идентификатор
КВАНТОВАНИЕ ВТОРИЧНОЕ         
метод исследования квантовых систем многих или бесконечного числа частиц (либо квазичастиц); особенно важен в квантовой теории поля, рассматривающей системы с изменяющимся числом частиц. В методе квантования вторичного состояние системы описывается с помощью чисел заполнения. Изменение состояния интерпретируется как процессы рождения и уничтожения частиц.
Квантование сигнала         
  • [[Цифровой сигнал]]
  • Неквантованный сигнал с дискретным временем

дискретизация непрерывных сигналов, преобразование электрического Сигнала, непрерывного во времени и по уровню, в последовательность дискретных (отдельных) либо дискретно-непрерывных сигналов, в совокупности отображающих исходный сигнал с заранее установленной ошибкой. К. с. осуществляется при передаче данных в телемеханике, при аналого-цифровом преобразовании в вычислительной технике, в импульсных системах автоматики и др.

При передаче непрерывных сигналов обычно достаточно передавать не сам сигнал, а лишь последовательность его мгновенных значений, выделенных из исходного сигнала по определённому закону. К. с. производится по времени, уровню или по обоим параметрам одновременно. При К. с. по времени сигнал через равные промежутки времени М прерывается (импульсный сигнал) либо изменяется скачком (ступенчатый сигнал, рис.). Например, непрерывный сигнал, проходя через контакты периодически включаемого электрического реле, преобразуется в последовательность импульсных сигналов. При бесконечно малых интервалах включения (отключения), т. е. при бесконечно большой частоте переключений контактов, получается точное представление непрерывного сигнала. При К. с. по уровню соответствующие мгновенные значения непрерывного сигнала заменяются ближайшими дискретными уровнями, которые образуют дискретную шкалу квантования. Любое значение сигнала, находящееся между уровнями, округляется до значения ближайшего уровня.

При бесконечно большом числе уровней квантованный сигнал превращается в исходный непрерывный сигнал.

Лит.: Харкевич А. А., Борьба с помехами, 2 изд., М., 1965; Маркюс Ж., Дискретизация и квантование, пер. с франц., М., 1969.

М. М. Гельман.

Квантование сигнала: а - по времени; б - по уровню; x0(t) - исходный сигнал; x(t) - квантованный сигнал; Δt - интервал квантования; Δх - уровень квантования.

КВАНТОВАНИЕ СИГНАЛА         
  • [[Цифровой сигнал]]
  • Неквантованный сигнал с дискретным временем
преобразование сигнала в последовательность импульсов (квантование сигнала по времени) или в сигнал со ступенчатым изменением амплитуды (квантование сигнала по уровню), а также одновременно и по времени, и по уровню. Применяется, напр., при преобразовании непрерывной величины в код в вычислительных устройствах, цифровых измерительных приборах и др.
Нейронная сеть Кохонена         
  • Дирихле]] для случайно выбранных точек (каждая точка указана в своём многоугольнике).
  • метастаз]]) и цвета (TYPE — молекулярный тип опухоли). На панели (a) показана конфигурация узлов двумерной упругой карты в проекции на первые три главные компоненты. Сравнивая (b) и (c), можно заметить, что базальный тип опухоли как кластер лучше отделён на нелинейной проекции (b).
  • Пример возможного разделения классов, составленного с помощью разбиения Вороного-Дирихле.
Нейронные сети Кохонена — класс нейронных сетей, основным элементом которых является слой Кохонена. Слой Кохонена состоит из адаптивных линейных сумматоров («линейных формальных нейронов»).
Архитектурное решение         
ЧАСТЬ ПРОЕКТНОЙ РАБОТЫ ПО СОЗДАНИЮ ДОКУМЕНТАЦИИ ДЛЯ ПРОИЗВОДСТВА СТРОИТЕЛЬНЫХ РАБОТ
Архитектурные решения; Архитектурно-художественное решение; Архитектурно-планировочное решение; Функционально-планировочное решение; Объёмно-планировочное решение; Объёмно-пространственное решение; Архитектурно-композиционное решение; Объемно-планировочное решение; Объемно-пространственное решение
Архитекту́рное реше́ние (архитектурные решения, АР) — часть проектной работы, направленной на создание документации для производства строительных работ.
Квантование         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Квантова́ние — процедура построения чего-либо с помощью дискретного набора величин, например, целых чисел, в отличие от построения с помощью непрерывного набора величин, например, вещественных чисел.

Википедия

Вторичное квантование

Втори́чное квантова́ние (каноническое квантование) — метод описания многочастичных квантовомеханических систем. Наиболее часто этот метод применяется для задач квантовой теории поля и в многочастичных задачах физики конденсированных сред.