Конечных разностей исчисление - определение. Что такое Конечных разностей исчисление
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Конечных разностей исчисление - определение

Конечная разность; Исчисление конечных разностей; Конечных разностей исчисление
Найдено результатов: 65
КОНЕЧНЫХ РАЗНОСТЕЙ ИСЧИСЛЕНИЕ         
раздел математики, в котором изучаются функции при дискретном (прерывном) изменении аргумента, в отличие от дифференциального исчисления и интегрального исчисления, где аргумент предполагается непрерывно изменяющимся.
Конечных разностей исчисление         

раздел математики, в котором изучаются функции при дискретном (прерывном) изменении аргумента, в отличие от дифференциального исчисления (См. Дифференциальное исчисление) и интегрального исчисления (См. Интегральное исчисление), где аргумент предполагается непрерывно изменяющимся. Конечными разностями "вперёд" для последовательности значений y1= f (x1), y2 = f (x2),..., yk = f (xk),... функции f (x), соответствующих последовательности значений аргумента x0,..., xk,,... (xk = х0 + kh, h - постоянное, k - целое), называют выражения:

ΔykΔf (xk) = f (xk+1) - f (xk)

(разности 1-го порядка),

Δ2ykΔ2f (xk) = Δf (xk+1)- Δf (xk) = f (xk+2)-2f (xk+1) + f (xk)

(разности 2-го порядка),

ΔnykΔnf (xk) = Δn-1f (xk+1) - Δn-1f (xk)

(разности n-го порядка).

Соответственно, конечные разности "назад" Δnyк определяются равенствами

Δnyк = Δnyк + n.

При интерполяции (См. Интерполяция) часто пользуются т. н. центральными разностями δny, которые вычисляются при нечётном n в точках х = xi+1l2h, а при чётном n в точках х = xi по формулам

δf (xi + 1/2h) ≡ δyi+1/2 = f (xi+1) - f (xi),

δ2f (xi) ≡ δ2yi = δyi+1/2,

δ2m-1f (xi + 1/2h) ≡ δ2т-1yi+1/2 = δ2т-2yi+12т-2yi,

δ2mf (xi) ≡ δуi = δ2т-1yi+1/2 - δ2т-1yi-1/2

Они дополняются средними арифметическими

,

,

где m = 1,2,...; если m = 0, то полагают

.

Центральные разности δny связаны с конечными разностями Δny соотношениями

δуi = Δуi-m,

δ2т+1yi+1/2 = Δ2m+1yi-m

Если значения аргумента не составляют арифметической прогрессии, т. е. xk+1 - xk не есть тождественно постоянная, то вместо конечных разностей пользуются разделёнными разностями, последовательно определяемыми по формулам

........................................................

.

Связь между конечными разностями и производными устанавливается формулой Δnyk = f (n)(), где xk≤xk+n. Существует полная аналогия между ролью конечных разностей в теории функций дискретного аргумента и ролью производных в теории функций непрерывного аргумента; конечные разности являются удобным аппаратом при построении ряда разделов численного анализа: интерполирование функций, численное дифференцирование и интегрирование, численные методы решения дифференциальных уравнений.

Например, для приближённого решения (См. Приближённое решение)дифференциального уравнения (обыкновенного или с частными производными) часто заменяют входящие в него производные соответствующими разностями, деленными на степени разностей аргументов, и решают полученное таким способом разностное уравнение (одномерное или многомерное).

Важный раздел К. р. и. посвящен решению разностных уравнений вида

F [x,(f (x),...,Δnf (x)] = 0 (1)

задаче, во многом сходной с решением дифференциальных уравнений n-го порядка. Обычно уравнение (1) записывают в виде

Ф [х, f (x), f (x1),..., f (xn)] = 0,

выражая разности через соответствующие значения функции. Особенно простой случай представляет линейное однородное уравнение с постоянными коэффициентами:

f (x+n) + a1f (x+n-1) +... + anf (x) = 0,

где a1,..., an - постоянные числа. Чтобы решить такое уравнение, находят корни λ1, λ2,... λn его характеристического уравнения

λn + a1λn-1+...+an = 0.

Тогда общее решение данного уравнения представится в виде

f (x) = С1λ1х + C2λ2x +... + Cnλnx,

где C1, C2,..., Cn - произвольные постоянные (здесь предполагается, что среди чисел λ1, λ2,..., λn нет равных).

Лит.: Березин И. С., Жидков Н. П., Методы вычислений, 3 изд., т. 1-2, М., 1966; Гельфонд А. О., Исчисление конечных разностей, 3 изд., М., 1967.

Под редакцией Н. С. Бахвалова.

КОНЕЧНЫЕ РАЗНОСТИ         
Исчисление конечных разностей связано с изучением свойств и применений разностей между соседними членами какой-нибудь последовательности или между значениями функции в точках, расположенных с постоянным интервалом в некотором пространстве. Слово "конечные" используется здесь в несколько устаревшем смысле "не бесконечно малые", т.е. не связанные с предельными переходами. Поскольку дифференциальное исчисление занимается изучением пределов разностей, а исчисление конечных разностей - самими разностями, то естественно, что между этими двумя теориями существуют много параллелей. Исчисления конечных разностей используются при интерполяции в математических таблицах, при суммировании числовых рядов, при вычислении интегралов и дифференцировании функций. Разности встречаются также в любой ситуации, когда надо описать поведение объекта, который испытывает воздействие меняющихся условий на определенном расстоянии (во времени и в пространстве). Например, термостату требуется значительное время, чтобы отреагировать на изменение температуры, поэтому он реагирует не на текущую температуру, а на ту, что была минуту назад. Другой пример: автомашиной управляет водитель, которому требуется какое-то время, чтобы отреагировать на возникшую на дороге ситуацию.
Под конечной разностью первого порядка функции f (x) принято понимать величину
где d - некоторая постоянная, которую часто, но не всегда, принимают равной 1. Разность второго порядка обозначается ?2f и представляет собой разность разностей, т.е.
Продолжив этот процесс, мы получим разности более высоких порядков ?3f (x), ?4f (x), ??.
Данные выше определения можно также применить к членам любых последовательностей величин, например, к последовательности
3, 6, 11, 18, 27, 38, ??
Первые разности равны
6 - 3, 11 - 6, 18 - 11, 27 - 18, 38 - 27, ?,
т.е.
3, 5, 7, 9, 11, ?;
разности второго порядка постоянны и равны 2.
В общем виде такие последовательности можно записать как
где разности первого, второго и т.д. порядков определяются выражениями
а n может принимать любое допустимое для индекса значение.
В некоторых приложениях используются последовательности вида
где индексы могут принимать любые убывающие значения. В этом случае вместо символа . используется символ "разделенной разности". Разделенные разности первого и второго порядков определяются следующим образом:
Помимо уже названных выше приложений, исчисление конечных разностей используется в страховании, теории вероятностей и статистике. В последние годы с изобретением быстродействующих компьютеров конечные разности стали все более широко применяться при решении дифференциальных уравнений, обыкновенных и в частных производных, многие из которых ранее было невозможно решить другими математическими методами.
У истоков теории. Хотя исследование свойств и использование конечных разностей приходится на современный период развития математики, Птолемей (ок. 150 н.э.) ввел в Альмагесте таблицу разностей первого порядка, чтобы облегчить расчеты в таблице длин хорд. Разности второго порядка использовал при вычислении своих таблиц логарифмов в 1624 Г.Бриггс. Теория интерполяции берет начало со знаменитой пятой леммы из 3-й книги Математических начал (1687) И.Ньютона, в которой впервые была приведена формула, носящая ныне его имя. Частный случай формулы Ньютона, открытый также независимо его современником Дж.Грегори (1638-1675), приведен ниже (см. формулу (7)). В общей формуле интерполяции Ньютона использовались разделенные разности, хотя этот термин, по-видимому, был введен О.де Морганом (1806-1871) в 1848. Первое применение исчисления конечных разностей к задачам теории вероятностей принято связывать с именами П.де Монтмора (1678-1719) и А.де Муавра (1667-1754).
Хотя Л.Эйлер (1707-1783) в своих работах по дифференциальному исчислению использовал предельные переходы в конечных разностях, основания современной теории конечных разностей были заложены в основном Ж.Лагранжем (1736-1813) и П.Лапласом (1749-1827). Первый из них ввел в исчисление конечных разностей символические методы, второй сделал конечные разности главным инструментом в своей Аналитической теории вероятностей (1812).
Под влиянием этих работ математики 19 в. принялись интенсивно разрабатывать предмет, и в 1860 Дж.Буль выпустил свой классический Трактат об исчислении конечных разностей. С тех пор это исчисление и круг его приложений существенно расширились. Одно из наиболее важных приложений конечные разности нашли в статистике. Особенно полезными они оказались в теории сериальной корреляции, в анализе случайных последовательностей и статистических временных рядов.
Конечные разности         
Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании и численном дифференцировании.
Метод конечных разностей         
ЧИСЛЕННЫЙ МЕТОД РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ОСНОВАННЫЙ НА ЗАМЕНЕ ПРОИЗВОДНЫХ РАЗНОСТНЫМИ СХЕМАМИ
Конечных разностей метод; Метод сеток; Сеточный метод; Сеток метод
Метод конечных разностей — численный метод решения дифференциальных уравнений, основанный на замене производных разностными схемами. Является сеточным методом.
Классификация простых конечных групп         
Теорема о классификации простых конечных групп — теорема теории групп, классифицирующая с точностью до изоморфизма простые конечные группы.
Сеток метод         
ЧИСЛЕННЫЙ МЕТОД РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ОСНОВАННЫЙ НА ЗАМЕНЕ ПРОИЗВОДНЫХ РАЗНОСТНЫМИ СХЕМАМИ
Конечных разностей метод; Метод сеток; Сеточный метод; Сеток метод

собирательное название группы приближённых методов решения дифференциальных, интегральных и интегро-дифференциальных уравнений. Применительно к дифференциальным уравнениям с частными производными термин "С. м." используется в качестве синонима терминов "метод конечных разностей" и "разностный метод". С, м. - один из наиболее распространённых приближённых методов решения задач, связанных с дифференциальными уравнениями. Широкое применение С. м. объясняется его большой универсальностью и сравнительной простотой реализации на ЭВМ.

Суть С. м. состоит в следующем: область непрерывного изменения аргументов, в которой ищется решение уравнения, дополненного, если необходимо, краевыми и начальными условиями, заменяется дискретным множеством точек (узлов), называемым сеткой; вместо функций непрерывного аргумента рассматриваются функции дискретного аргумента, определяемые в узлах сетки и называемые сеточными функциями; производные, входящие в уравнение, краевые и начальные условия, аппроксимируются разностными отношениями; интегралы аппроксимируются квадратурными формулами; при этом исходное уравнение (задача) заменяется системой (линейных, если исходная задача была линейной) алгебраических уравнений (системой сеточных уравнений, а применительно к дифференциальным уравнениям - разностной схемой).

Если полученная таким образом система сеточных уравнений разрешима, по крайней мере, на достаточно мелкой сетке, т. е. сетке с густым расположением узлов, и её решение при неограниченном измельчании сетки приближается (сходится) к решению исходного уравнения (задачи), то полученное на любой фиксированной сетке решение и принимается за приближённое решение исходного уравнения (задачи).

Для одномерного теплопроводности уравнения (См. Теплопроводности уравнение)

, , , (1)

с начальным u (х, 0) = u0(x) и краевым условиями u (0, t) = μ1(t), u (1, t) = μ2(t) [предполагается, что u0(0) = μ1(0), u0(1) = μ2(0)] на прямоугольной равномерной сетке с узлами (xi = ih, tj = jτ), где i = 0, 1, 2,..., N, j = 0, 1, 2,..., h = 1/N и τ > 0 - шаги сетки, наиболее часто используемая разностная схема выглядит так (схема с весами):

(2)

где σ - некоторый параметр. Для двумерного Пуассона уравнения (См. Пуассона уравнение)

, , , (3)

с однородными краевыми условиями u (0, у) = u (х, 0) = u (1, у) = u (х, 1) = 0 на прямоугольной равномерной сетке с узлами xi1 = i1h1, yi2 = i2h2, где i1 = 0, 1,..., N1, i2 = 0, 1,..., N2, h1 = 1/N1, h2 = 1/N2, наиболее употребительной является разностная схема:

(4)

Для интегрального уравнения (См. Интегральные уравнения)

,

,

на равномерной сетке с узлами xi = ih, где i = 0, 1, 2,..., N, h = 1/N, простейшая система сеточных уравнении имеет вид:

,

Помимо указанных выше равномерных прямоугольных сеток, могут использоваться сетки более общего вида, например неравномерные, а для уравнения (3) и непрямоугольные. Сеточные уравнения на таких сетках выглядят более сложно. Если уравнение (3) решается в области, отличной от прямоугольника, то даже на равномерной прямоугольной сетке аппроксимация краевых условий становится менее очевидной.

При выборе той или иной сеточной аппроксимации большое значение имеет величина погрешности аппроксимации (п. а.). Так, для уравнений (2) п. а. есть величина O (τ + h2) при любом σ, O (τ2 + h2) при σ = 0.5 и O (τ2 + h 4) при σ = 0,5 - h2/12τ. Для схемы (4) п. а. есть величина O (h12 + h22). Наличие хорошей аппроксимации уравнений и краевых условий сеточными уравнениями ещё не гарантирует того, что решение системы сеточных уравнений будет в некотором смысле близко к решению исходной задачи. Нужно ещё, чтобы решение сеточных уравнений было устойчивым, т. е. непрерывно (равномерно непрерывно относительно выбора сетки) зависело от правой части и начальных и краевых данных. Только наличие хорошей аппроксимации и устойчивости гарантирует сходимость решений сеточных уравнений к решению исходного уравнения при неограниченном измельчании сетки. Отметим, что схема (2) устойчива при ; при σ = 0 получается явная схема, устойчивая при условии .

Системы сеточных уравнений представляют собой системы линейных алгебраических уравнений. Порядок системы будет тем выше, чем мельче сетка. Но точность приближённого решения зависит от величины шагов сетки, и она тем больше, чем меньше шаги. Поэтому получающиеся алгебраические системы обычно имеют довольно высокий порядок.

Лит.: Самарский А. А., Введение в теорию разностных схем, М., 1971; Годунов С. К., Рябенький В. С., Разностные схемы, М., 1973.

В. Б. Андреев, А. А. Самарский.

Типизированное лямбда-исчисление         
Типизированное лямбда-исчисление — это версия лямбда-исчисления, в которой лямбда-термам приписываются специальные синтаксические метки, называемые типами. Допустимы различные наборы правил конструирования и приписывания таких меток, они порождают различные системы типизации.
Лямбда-исчисление         
Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем для формализации и анализа понятия вычислимости.
Исчисление взаимодействующих систем         
Исчисление взаимодействующих систем (, CCS, исчисление общающихся систем) в информатике — исчисление процессов, разработанное Робином Милнером в 1980 году. Исчисление работает с моделью неразделяемых коммуникаций между ровно двумя участниками.

Википедия

Конечные разности

Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании и численном дифференцировании.

Что такое КОНЕЧНЫХ РАЗНОСТЕЙ ИСЧИСЛЕНИЕ - определение