Лапласа неизменяемая плоскость - определение. Что такое Лапласа неизменяемая плоскость
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Лапласа неизменяемая плоскость - определение

Местная плоскость Лапласа
  • Иллюстрация плоскости Лапласа небесного тела (показана серым) как усреднённой по времени орбитальной плоскости
Найдено результатов: 192
Лапласа неизменяемая плоскость      

плоскость, проходящая через центр масс Солнечной системы перпендикулярно вектору момента количества движения. Понятие Л. н. п. было введено в 1789 П. Лапласом, указавшим на преимущества её использования в качестве основной координатной плоскости при изучении движений тел Солнечной системы: в то время как положения плоскостей эклиптики и экватора непрерывно изменяются, Л. н. п. сохраняет своё положение в пространстве неизменным. Для того чтобы определить положение Л. н. п. относительно плоскости эклиптики, необходимо знать числовые значения масс всех планет. Поскольку с развитием астрономических исследований эти величины постепенно уточняются, то и параметры, определяющие положение Л. н. п., несколько изменяются. Положение Л. п. п. относительно эклиптики в эпоху 1950,0 определяется следующими элементами: эклиптическая долгота точки пересечения с эклиптикой Ω = 107° 13,3' ± 2,1', наклон i = 1°38'49''± 22''.

Г. А. Чеботарев.

Плоскость Лапласа         
Плоскость Лапласа, местная плоскость Лапласа — плоскость, в которой происходит прецессия узла орбиты спутника планеты.
Преобразование Лапласа         
ИНТЕГРАЛЬНОЕ ПРЕОБРАЗОВАНИЕ, ОБОБЩЕНИЕ ПРЕОБРАЗОВАНИЯ ФУРЬЕ
Обратное преобразование Лапласа; Лапласа преобразование; Одностороннее Преобразование Лапласа; Дискретное преобразование Лапласа; ℒ; Одностороннее преобразование Лапласа; Интеграл Бромвича
Преобразова́ние Лапла́са (ℒ) — интегральное преобразование, связывающее функцию \ F(s) комплексного переменного (изображение) с функцией \ f(x) вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.
Лапласа уравнение         
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ВТОРОГО ПОРЯДКА
Лапласа уравнение

дифференциальное уравнение с частными производными

где х, у, z - независимые переменные, а u = u(x, y, z) - искомая функция. Это уравнение названо по имени П. Лапласа, рассмотревшего его в работах по теории тяготения (1782). К Л. у. приводит ряд задач физики и техники. Л. у. удовлетворяют температура при стационарных процессах, потенциал электростатического поля в точках пространства, свободных от зарядов, потенциал поля тяготения в области, не содержащей притягивающих масс, и т. п. Функции, удовлетворяющие Л. у., называются гармоническими функциями (См. Гармонические функции). О постановке задач для Л. у. см. в ст. Краевые задачи.

Уравнение Лапласа         
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ВТОРОГО ПОРЯДКА
Лапласа уравнение
Уравнение Лапласа — дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:
Лапласа преобразование         
ИНТЕГРАЛЬНОЕ ПРЕОБРАЗОВАНИЕ, ОБОБЩЕНИЕ ПРЕОБРАЗОВАНИЯ ФУРЬЕ
Обратное преобразование Лапласа; Лапласа преобразование; Одностороннее Преобразование Лапласа; Дискретное преобразование Лапласа; ℒ; Одностороннее преобразование Лапласа; Интеграл Бромвича

преобразование, переводящее функцию f (t) действительного переменного t (0 < t < ∞), называемую "оригиналом", в функцию

(1)

комплексного переменного р =σ +iτ. Под Л. п. понимают также не только само преобразование, но и его результат - функцию F (p). Интеграл в правой части формулы (1) называется интегралом Лапласа. Он был рассмотрен П. Лапласом в ряде работ, которые объединены в его книге "Аналитическая теория вероятностей", вышедшей в 1812. Значительно раньше (в 1737) такие интегралы применял к решению дифференциальных уравнений Л. Эйлер.

При некоторых условиях, указанных ниже, Л. п. определяет функцию f (t) однозначно, в простейших случаях - по формуле обращения:

(2)

Л. п. является линейным функциональным преобразованием. Из числа основных формул Л. п. можно отметить следующие:

,

, n = 1, 2, ...,

, t >0.

Л. п. в сочетании с формулой (2) его обращения применяется к интегрированию дифференциальных уравнений. В частности, в силу свойства (1) и линейности, Л. п. решения обыкновенного линейного дифференциального уравнения с постоянными коэффициентами удовлетворяет алгебраическому уравнению 1-й степени и может быть, следовательно, легко найдено. Так, если, например, у'' + у = f (t), y (0) = y' (0) = 0

и Y (p) = L [y], F (p) = L [f],

то L [y''] = p2Y (p)

и p2Y (p) + Y (p) = F (p),

откуда

Многочисленные задачи электротехники, гидродинамики, механики, теплопроводности эффективно решаются методами, использующими Л. п.

Л. п. нашло особенно широкое применение в обосновании операционного исчисления (См. Операционное исчисление), в котором обычно вместо Л. п. F (p) вводится "изображение" оригинала f (t) - функция pF (p).

Современная общая теория Л. п. строится на основе интегрирования в смысле Лебега (см. Интеграл). Для применимости Л. п. к функции f (t) необходимо, чтобы f (t) была интегрируема в смысле Лебега на любом конечном интервале (0, t), t > 0 и интеграл (1) для неё сходился хотя бы в одной точке p0 = σ0 + iτ0. Если интеграл (1) сходится в точке р0, то он сходится во всех точках р, для которых Re (р-р0) > 0. Т. о., если интеграл (1) сходится хотя бы в одной точке плоскости p0, то либо он сходится во всей плоскости, либо существует такое число σс, что при Re p > σc интеграл (1) сходится, а при Re р < σс расходится. Число σс называется абсциссой сходимости интеграла Лапласа. F (p) - аналитическая функция (См. Аналитические функции) в полуплоскости Re р > σс.

Лит.: Диткин В. А. и Кузнецов П. И., Справочник по операционному исчислению. Основы теории и таблицы формул, М. - Л., 1951; Диткин В. А. и Прудников А. П., Интегральные преобразования и операционное исчисление, М., 1961; Дёч Г., Руководство к практическому применению преобразования Лапласа, пер. с нем., М., 1965.

ЛАПЛАСА УРАВНЕНИЕ         
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ВТОРОГО ПОРЯДКА
Лапласа уравнение
дифференциальное уравнение с частными производными 2-го порядкагде, x, y, z - независимые переменные, ?(x, y, z) - искомая функция. Рассмотрено П. Лапласом (1782). К уравнению Лапласа приводят многие задачи математической физики (напр., распределение температур в стационарном процессе).
Локальная теорема Муавра — Лапласа         
  • С ростом ''n'' форма биномиальной фигуры распределения становится похожа на плавную кривую Гаусса.
Теорема Муавра — Лапласа — одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Если при каждом из n независимых испытаний вероятность появления некоторого случайного события E равна p \in (0, 1), и m — число испытаний, в которых E фактически наступает, то вероятность справедливости неравенства близка (при больших n) к значению интеграла Лапласа.
Оператор Лапласа — Бельтрами         
Опера́тор Лапла́са — Бельтра́ми (называется иногда оператором Бельтра́ми — Лапла́са или просто оператором Бельтра́ми) — дифференциальный оператор второго порядка, действующий в пространстве гладких (или аналитических) функций на римановом многообразии M.
Матрица Кирхгофа         
Матрица Кирхгофа — одно из представлений конечного графа с помощью матрицы. Матрица Кирхгофа представляет дискретный оператор Лапласа для графа.

Википедия

Плоскость Лапласа

Плоскость Лапласа, местная плоскость Лапласа — плоскость, в которой происходит прецессия узла орбиты спутника планеты.

Применение плоскости Лапласа является типичным для описания орбит спутников планет-гигантов, находящихся в близости от планеты и возмущаемых главным образом Солнцем и гармониками гравитационного поля планеты. Под влиянием Солнца и сжатия планеты оскулирующая эллиптическая орбита спутника перемещается в пространстве так, что её наклон к некоторой неизменяемой плоскости остаётся почти постоянным. Эта неизменяемая плоскость проходит через линию пересечения плоскости экватора и плоскости орбиты планеты и расположена между ними. Узел орбиты спутника на неизменяемой плоскости — плоскости Лапласа — движется почти равномерно. Угол между неизменяемой плоскостью и плоскостями экватора и орбиты планеты зависит от сжатия планеты и силы притяжения Солнца. Если влияние сжатия значительно превосходит влияние Солнца, то плоскость Лапласа почти совпадает с экватором планеты. Это имеет место для близких спутников Юпитера. Если влияние Солнца значительно превосходит возмущающее действие сжатия планеты, как, например, у Луны, то неизменяемая плоскость Лапласа почти совпадает с плоскостью орбиты планеты.

Что такое Лапл<font color="red">а</font>са неизмен<font color="red">я</font>емая пл<font color="red"