Литий - определение. Что такое Литий
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Литий - определение

ХИМИЧЕСКИЙ ЭЛЕМЕНТ
Li; Lithium
  • Карминово-красное окрашивание пламени солями лития
  • другое (16 %)}}
Найдено результатов: 277
Литий         
Литий (Li, ат. вес 7) - был открыт Арфведсоном в 1817 г. при анализеминерала петалита, затем он был найден им в лепидолите и во многихдругих минералах. Арфведсон указал на сходство Л. со щелочными металламии назвал его Л. (от luJoV - камень) в знак того, что этот элемент он встретил впервые вминеральном царстве. Подобно калию и натрию, Li имеет обширноераспространение в природе, но встречается в небольших количествах.Наиболее богатые минералы содержат не более 9 - 10% окиси Л. Li2O, напр.в монтебразите (фосфорно-кислая соль Л. и алюминия) ее находится до9,8%, в трифилине (фосфорно-кислая соль железа, марганца и Л.) от 3,4%до 7,7%, в силикатах: криофиллите . до 4, 1%, в лепидолите . от 1,3% до5,7% и пр. Л. найден в некоторых метеоритах, в морской воде, во многихреках и минеральных источниках, напр. в Карлсбаде, Mapиeнбаде,Баден-Бадене и пр., в некоторых растениях, напр. в табаке и пр.Металлический Li в свободном состоянии в природе не встречается подобнокалию и натрию. Несмотря на все попытки, Арфведсону не удалось еговыделить. В первый раз он был получен Брандесом при действиигальванического тока на окись, но Л. получилось так мало, что нельзябыло изучить его свойств; только в 1855 г. Бунзену и Матиссену удалосьполучить его в достаточном количестве при электролизе хлористого Л.,LiCl. Эта соль плавилась в фарфоровом тигле на горелке и через неепропускался ток от 5 - 6 элементов Бунзена. Положительным электродомслужила палочка кокса, а отрицательным - тонкая железная проволока. Наней выделялся Li в виде небольших шариков. Так как при этом теряетсямного хлористого Л., который разбрызгивается во все стороны, то Тростпредложил следующий простой способ. Берут высокий чугунный тигель скрышкой хорошо пригнанной. В ней два отверстия. В одно проходитотрицательный электрод, а в другое . металлическая трубка, доходящая дополовины тигля; сюда вставляют фарфоровую трубочку, через которую уже ипропускают положительный электрод. При получении Li температура недолжна быть высока, так как, по Гюнцу, образовавшийся Li можетдействовать на LiCl, давая Li2Cl. Чтоб понизить температуру плавленияLiCl, Гюнц смешивает его с KCl в эквивалентном количестве. Но тогдаполучается Li с содержанием калия. Что касается получения Li химическимпутем, Подобно, напр., калию или натрию, то результаты получаютсянеудовлетворительные. Ни углекислая соль Л., ни водная окись невосстановляются до металла, напр. с углем или железом; углелитиева сольс магнием дает Li, но реакция идет очень бурно, и Li получается смагнием. Li . металл серебристого цвета, более твердый, чем калий инатрий, но мягче свинца, тянется в проволоку менее прочную, чемсвинцовая. Уд. вес около 0,59, так что он легче всех известных твердыхтел. Л. плавится около 180°; не летит при красном калении. Теплоемкостьпо Реньо 0,9408 (от 27° до 100°); электропроводность 19 при 20° (дляAg=100). Спектр Li характеризуется ярко красной линией Lia. По Бунзену -достаточно 0,000009 мгр. хлористого Л., чтобы эта линия выступила сясностью. В сухом воздухе или кислороде при обыкновенной температуре илипри нагревании до 180° он не изменяется; при 200° же воспламеняется игорит ослепительно ярким светом. Л. разлагает воду при обыкновеннойтемпературе, но при этом он не воспламеняется Подобно, напр., натрию. Вовлажном воздухе цвет его темнеет. Брошенный в азотную кислоту, онвоспламеняется. При нагревании он горит в углекислоте, восстановляеткремнезем и пр. Л. прямо соединяется с хлором, бромом, йoдом, с серой,фосфором, азотом. Из кислот соляной, слабой серной выделяет водород;крепкая HJO4 на него мало действует; с металлами он образуетмногочисленные сплавы. Соединения Л. Li принадлежит к одноатомнымэлементам и дает соединения вида LiX (где Х . одноатомный элемент илигруппа). По характеру своих соединений Li занимает среднее место междутипичными щелочными металлами и щелочно-земными; из последних вособенности он схож с магнием. Так, напр., водная окись Л. LiHO подобноедкому натрию или калию хорошо растворима в воде, углекислая же сольLi2CO3, как и для кальция, стронция, бария или магния, мало растворима;сернокислая соль Li2SO4 хорошо растворима, а фосфорно-кислая Li3PO4плохо и пр. LiHO при накаливании не дает окиси Li2O как NaHO или КНО, ноLiNO3, Подобно азотно-кислым солям магния, кальция и пр., дает Li2O, ане LiNO2 и пр. С кислородом Л. дает два соединения: окись Li2O иперекись. Окись Li2O получается при горении Л. в кислороде, припрокаливании азотно-кислого Л. LiNO3 или при накаливании смесиуглекислого Л. Li2СО3 с углем. Li2O . вещество белого цвета, чрезвычайнопрочное: при накаливании с углем, железом, калием оно не разлагается;водород не восстановляет его. Li2O при накаливании не действует наплатину в противоположность щелочам. В воде она медленно растворяется свыделением небольшого количества тепла и дает резко щелочной раствор;при этом образуется водная окись LiHO. При выпаривании раствора окиси Л.в пустоте образуется кристаллический гидрат LiHO+H2O. На воздухе LiHOпритягивает воду; в горячей воде она также растворима как и в холодной,не растворяется в смеси спирта с эфиром. Плавится ниже красного каления,и прокаливанием нельзя получить из нее безводную окись Li2O. Перекись Л.образуется в некотором количестве при горении Л. в кислороде; припрокаливании Li2KO или Li2CO3 на воздухе. Она появляется здесь в видежелтого налета. Ей приписывается отчасти разъедание платины принакаливании Li2O. Хлористый Л. LiCl получается при действии хлора на Li,соляной кислоты на LiHO или Li2CO3 и пр. LiCl очень гигроскопичен; навоздухе он расплывается, в воде хорошо растворяется; 100 ч. воды, напр.,при 0° растворяют 63,7 ч. его, при 80° - 115 ч. и пр. При выпаривании (при нагревании) растворов егопроисходит отчасти разложение с выделением LiHO и НСl, как для MgCl2.При выпаривании над серной кислотой получается гидрат LiCl+2H2O;известна и LiCl+H2O. LiCl растворим также в спирту. При красном каленииLiCl плавится, при этом кислород воздуха частью разлагает его свыделением хлора и образованием окиси Л. или хлорокиси. Летучесть LiClпри накаливании больше NaCl и меньше КСl. Подобно другим хлористымсоединениям щелочных металлов, LiCl дает двойное соединение с хлорнойплатиной Li2PtCl6 + 6Н2О. Оно растворимо в воде, в спирте и в смесиспирта с эфиром. Гюнц указывает на существование Li2Cl. Бромистый ийодистый Л. LiBr, LiJ получаются при разложении углекислого Л. Li2CO3бромисто-водородной и йодистоводородной кислотами. Эти соли также оченьгигроскопичны и также отчасти разлагаются водой и кислородом как и LiCl.Из них Lis наиболее растворим, за ним идет LiBr, и LiCl. Напр., 100 ч.воды растворяют при 0° LiJ - 151 ч., а LiBr - 143 ч. Фтористый Л.приготовляется тоже из LiCO2, в воде он мало растворим, с НF даетсоединение LiFHF. Известны соли Л., отвечающие хлорноватой, бромноватой,йодноватой кислотам. Они очень гигроскопичны. Углекислый Л. Li2CO3 получается при насыщении pacтвоpa LiHOуглекислотой, при действии на растворимые соли Л. углекислых щелочей ипр. В последнем случае лучше брать углеаммиачную соль, так как Li2CO3очень упорно удерживает следы щелочей. Li2CO3 плавится при красномкалении частью разлагаясь (по Тросту до 83%). В воде он малорастворяется (при обыкновенной темпер. 1 литр растворяет около 12 - 15грм. соли); при нагревании растворимость уменьшается. В присутствии СО2растворимость значительно возрастает; напр., в 1 лит. его тогдарастворяется 52, 5 гр. Здесь выступает сходство с углекислыми солямищелочноземельных металлов. При кипячении Li2CO3 разлагает аммиачные солиподобно магнию; он растворяет мочевую кислоту и применяется в медицине.Двууглекислой соли для Li не известно с точностью, хотя, вероятно,образованием ее и обусловливается большая растворимость Li2CO3 в воде сСО2. Азотно-кислый Л. LiNO3 получается растворением Li2CO3 в азотнойкислоте. Он очень гигроскопичен, легко дает пересыщенные растворы. Прииспарении растворов LiNO3 при 15° получаются кристаллы изоморфные снатровой селитрой. LiNO3 растворяется в спирту; при накаливании онразлагается до Li2O. Серно-кислый Л., Li2SO4, получается растворением Li2CO3 в H2SO4. Вводе он хорошо растворяется, но с повышением темпер. растворимостьпадает; напр., 100 ч. воды при 0° раствор. 35,34 ч., при 20° - 34,36,при 100° - 29,24. При медленном испарении растворов серно-кислого Л.получаются кристаллы состава Li2SO4+H2O. Серно-кислый Л. дает двойныесоли с серно-кислым калием, аммонием, но не дает соединений, отвечающихквасцам. Кислая серно-кислая соль Л. получается при растворении Li2SO4 вкрепкой серной кислоте. Фосфорно-кислый Л., Li3PO4 получается при осаждении Li2SO4фосфорно-натриевой солью, в присутствии некоторого количества NaHO и NH3при нагревании. Он получается в виде кристаллов состава 2Li3PO4 +Н2О. 1ч. безводной соли требует для растворения 2539 ч. воды или 3920 ч.аммиачной воды. В слабой соляной и азотной кисл. соль растворяется;растворимость ее в воде увеличивается в присутствии аммиачных солей, скоторыми она дает двойные соединения и в присутствии СО2. Другие солифосфорной кислоты не представляют особого интереса. То же можно сказатьпро соли борной и хромовой кисл., которые вообще растворимы в воде. Сернистый Л. Li2S получается при воcстановлении углем серно-литиевойсоли. Li2S растворяется в воде, дает кислую соль LiHS, известны такжемногосернистые соединения Л. С азотом Li соединяется даже приобыкновенной температуре. Гюнц предложил применять Li для полученияаргона из воздуха. Что касается отделения и количественного определенияЛ., то можно сказать следующее. От тяжелых металлов Li отделяетсяосаждением последних сероводородом или сернистым аммонием, от кальция,стронция и бария - пользуясь растворимостью серно-кислого ищавелевокислого Л., от магния - пользуясь растворимостью водной окиси Л.Калий отделяется от него благодаря нерастворимости хлороплатинита калия;что же касается отделения натрия, то пользуются растворимостью в смесиспирта и эфира LiCl или LiNO3. Для количественного определенияприменяется серно-кислая и фосфорно-кислая соль Л. Для полноты остаетсясказать несколько слов о способах получения на практике соединений Л. изприродных материалов. Для этой цели служит главным образом лепидолит.Способов для извлечения оттуда Л. предложено много. Когда дело идет оприготовлении его в большом количестве, очень удобен способ Треста. 10ч. измельченного лепидолита смешивают с 10 ч. углекислого бария, 5 ч.серно-кислого бария и 3 ч. серно-кислого калия. Массу сплавляют в тигле,при охлаждении она представляет два слоя: верхний образован сернокислымисолями лития, калия и бария, а нижний состоит из стекла. Так как этостекло очень трудно плавится, можно дать массе только несколькоохладиться и слить верхний слой. Обработав массу водой, получаютсерно-кислый Л. в смеси с сернокислыми щелочами; их переводят вуглекислые соли (осаждая уксуснокислым барием и прокаливая полученныеуксуснокислые соли) и разделяют, пользуясь полной растворимостью Li2CO3.В этом способе BaS4 может быть заменен серно-кислым кальцием. С. Вуколов. Во врачебной практике применяется исключительно углекислый ибензойно-кислый Л. - белый порошок, который плавится при нагревании, апри охлаждении застывает в кристаллическую массу. Растворяется в 150 ч.горячей или холодной воды. Терапевтическое значение Л. зиждется на егосвойстве давать растворимую соль с мочевой кислотой. По способностирастворять мочекислые соли Л. превосходит калий и натрий. Указаннымисвойствами определяется терапевтическое значение этого средства.Употребление Л. приносит пользу при мочекислом диатезе, при подагре, примочевом песке, при желчной колике и при катаральных состояниях слизистыхоболочек. Некоторые врачи предпочитают назначать минеральные воды,богатые содержанием Л. (Bonifaciusquelle в Зальцшлирфе, Konigsquelle вЭльстере), так как в таком виде препарат лучше переносится желудком.Углекислый Л. следует прописывать в малых дозах (0,05 - 0,25 гр.) вбольшом количестве воды, еще лучше с зельтерской или содовой водой.Необходимо иметь в виду, что соли Л. оказывают не менее ядовитоедействие на сердце, чем соли калия. Д. К.
литий         
м.
Химический элемент, серебристо-белый, мягкий, очень легкий щелочной металл.
ЛИТИЙ         
я, мн. нет, м.
Химический элемент - легкий серебристо-белый металл, применяемый в ядерной энергетике, метал-лургии, стекольной промышленности. Литиевый - из лития, содержащий л.
ЛИТИЙ         
(лат. Lithium), Li, химический элемент I группы периодической системы, атомный номер 3, атомная масса 6,941, относится к щелочным металлам. Название от греч. lithos - камень (открыт в минерале петалите). Серибристо-белый, самый легкий из металлов; плотность 0,533 г/см3, tплощадь 180,5 °С. Химически очень активен, окисляется при обычной температуре; реагирует с азотом, образуя нитрид Li3N. Минералы - сподумен, лепидолит и др. Изотоп Li - единственный промышленный источник для производства трития. Литий используют для раскисления, легирования и модифицирования сплавов (напр., аэрона, склерона), как теплоноситель в ядерных реакторах, компонент сплавов на основе Mg и Al, анод в химических источниках тока; некоторые соединения лития входят в состав пластичных смазок, специальных стекол, термостойкой керамики, используются в медицине.
Литий         
(лат. Lithium)

Li, химический элемент 1 группы периодической системы Менделеева, атомный номер 3, атомная масса 6,941, относится к щелочным металлам (См. Щелочные металлы). Природный Л. состоит из двух стабильных изотопов - 6Li (7,42\%) и 7Li (92,58\%).

Л. был открыт в 1817 шведским химиком А. Арфведсоном в минерале петалите; название от греч. líthos - камень. Металлический Л. впервые получен в 1818 английским химиком Г. Дэви.

Распространение в природе. Л. - типичный элемент земной коры (содержание 3,2․10-3\% по массе), он накапливается в наиболее поздних продуктах дифференциации магмы - пегматитах. В мантии мало Л. - в ультраосновных породах всего 5․10-3\% (в основных 1,5․10-3\%, средних - 2․10-3\%, кислых 4․10-3\%). Близость ионных радиусов Li+, Fe2+ и Mg2+ позволяет Л. входить в решётки магнезиально-железистых силикатов - пироксенов и амфиболов. В гранитоидах он содержится в виде изоморфной примеси в слюдах. Только в пегматитах и в биосфере известно 28 самостоятельных минералов Л. (силикаты, фосфаты и др.). Все они редкие (см. Литиевые руды). В биосфере Л. мигрирует сравнительно слабо, роль его в живом веществе меньше, чем остальных щелочных металлов. Из вод он легко извлекается глинами, его относительно мало в Мировом океане (1,5․10-5\%). Промышленные месторождения Л. связаны как с магматическими породами (пегматиты, пневматолиты), так и с биосферой (солёные озёра).

Физические и химические свойства. Компактный Л. - серебристо-белый металл, быстро покрывающийся тёмно-серым налётом, состоящим из нитрида Li3N и окиси Li2O. При обычной температуре Л. кристаллизуется в кубической объёмноцентрированной решётке, а = 3,5098Å . Атомный радиус 1,57 Å, ионный радиус Li+ 0,68 Å. Ниже -195°С решётка Л. гексагональная плотноупакованная. Л. - самый лёгкий металл; плотность 0,534 г/см3 (20°С); tпл. 180,5°С, tkип. 1317°С. Удельная теплоёмкость (при 0-100°С) 3,31(103 дж/(кг․К), т. е. 0,790 кал/(г·град); термический коэффициент линейного расширения 5,6․10-5. Удельное электрическое сопротивление (20°С) 9,29․10-8 ом·м (9,29 мком·см); температурный коэффициент электрического сопротивления (0-100°С) 4,50․10-3. Л. парамагнитен. Металл весьма пластичен и вязок, хорошо обрабатывается прессованием и прокаткой, легко протягивается в проволоку. Твёрдость по Моосу 0,6 (твёрже, чем Na и К), легко режется ножом. Давление истечения (15-20°С) 17 Мн/м2 (1,7 кгс/мм2). Модуль упругости 5 Гн/м2 (500 кгс/мм2), предел прочности при растяжении 116 Мн/м2 (11,8 кгс/мм2), относительное удлинение 50-70\%. Пары Л. окрашивают пламя в карминово-красный цвет.

Конфигурация внешней электронной оболочки атома Л. 2s1; во всех известных соединениях он одновалентен. При взаимодействии с кислородом или при нагревании на воздухе (горит голубым пламенем) Л. образует окись Li2O (перекись Li2O2 получается только косвенным путём). С водой реагирует менее энергично, чем др. щелочные металлы, при этом образуются гидроокись LiOH и водород. Минеральные кислоты энергично растворяют Li (стоит первым в ряду напряжений, его нормальный электродный потенциал - 3,02 в).

Л. соединяется с галогенами (с йодом при нагревании), образуя галогениды (важнейший - Лития хлорид). При нагревании с серой Л. даёт сульфид Li2S, а с водородом - Лития гидрид. С азотом Л. медленно реагирует уже при комнатной температуре, энергично - при 250°С с образованием нитрида Li3N. С фосфором Л. непосредственно не взаимодействует, но в специальных условиях могут быть получены фосфиды Li3P, LiP, Li2P2. Нагревание Л. с углеродом приводит к получению карбида Li2C2, с кремнием - силицида Л. Бинарные соединения Л. - Li2O, LiH, Li3N, Li2C2, LiCI и др., a также LiOH весьма реакционноспособны; при нагревании или плавлении они разрушают многие металлы, фарфор, кварц и др. материалы. Карбонат (см. Лития карбонат), фторид LiF, фосфат Li3PO4 и др. соединения Л. по условиям образования и свойствам близки к соответствующим производным магния и кальция.

Л. образует многочисленные Литийорганические соединения, что определяет его большую роль в органическом синтезе.

Л. - компонент многих сплавов. С некоторыми металлами (Mg, Zn, Al) он образует твёрдые растворы значительной концентрации, со многими - интерметаллиды (LiAg, LiHg, LiMg2, LiAl и мн. др.). Последние часто весьма тверды и тугоплавки, незначительно изменяются на воздухе; некоторые из них - полупроводники. Изучено более 30 бинарных и ряд тройных систем с участием Л.; соответствующие им сплавы уже нашли применение в технике.

Получение и применение. Соединения Л. получаются в результате гидрометаллургической переработки концентратов - продуктов обогащения литиевых руд. Основной силикатный минерал - сподумен перерабатывают по известковому, сульфатному и сернокислотному методам. В основе первого - разложение сподумена известняком при 1150-1200°С:

Li2O․Al2O3․4SiO2 + 8CaCO3 = Li2OAl2O3 + 4(2CaO․SiO2) + 8CO2.

При выщелачивании спека водой в присутствии избытка извести алюминат Л. разлагается с образованием гидроокиси Л.:

Li2O․Al2O3 + Ca(OH)2 = 2LiOH + CaO․Al2O3.

По сульфатному методу сподумен (и др. алюмосиликаты) спекают с сульфатом калия:

Li2O․Al2O3․4SiO2 + K2SO4 = Li2SO4 + K2O․Al2O3․4SiO2.

Сульфат Л. растворяют в воде и из его раствора содой осаждают карбонат Л.:

Li2SO4 + Na2CO3 = Li2CO3 + Na2SO4.

По сернокислотному методу также получают сначала раствор сульфата Л., а затем карбонат Л.; сподумен разлагают серной кислотой при 250-300°С (реакция применима только для β-модификации сподумена):

β-Li2O․Al2O3․4SiO2 + H2SO4 = Li2SO4 + H2O․Al2O3․4SiO2.

Метод используется для переработки руд, необогащённых сподуменом, если содержание в них Li2O не менее 1\%. Фосфатные минералы Л. легко разлагаются кислотами, однако по более новым методам их разлагают смесью гипса и извести при 950-1050°С с последующей водной обработкой спеков и осаждением из растворов карбоната Л.

Металлический Л. получают электролизом расплавленной смеси хлоридов Л. и калия при 400-460°С (весовое соотношение компонентов 1:1). Электролизные ванны футеруются магнезитом, алундом, муллитом, тальком, графитом и др. материалами, устойчивыми к расплавленному электролиту; анодом служат графитовые, а катодом - железные стержни. Черновой металлический Л. содержит механические включения и примеси (К, Mg, Ca, Al, Si, Fe, но главным образом Na). Включения удаляются переплавкой, примеси - рафинированием при пониженном давлении. В настоящее время большое внимание уделяется металлотермическим методам получения Л.

Важнейшая область применения Л. - Ядерная энергетика. Изотоп 6Li - единственный промышленный источник для производства трития (См. Тритий) (см. Водород) по реакции:

.

Сечения захвата тепловых нейтронов (σ) изотопами Л. резко различаются: 6Li 945, 7Li 0,033; для естественной смеси 67 (в Барнах); это важно в связи с техническим применением Л. - при изготовлении регулирующих стержней в системе защиты реакторов. Жидкий Л. (в виде изотопа 7Li) используется в качестве теплоносителя в урановых реакторах. Расплавленный 7LiF применяется как растворитель соединений U и Th в гомогенных реакторах. Крупнейшим потребителем соединений Л. является силикатная промышленность, в которой используют минералы Л., LiF, Li2CO3 и многие специально получаемые соединения. В чёрной металлургии Л., его соединения и сплавы широко применяют для раскисления, легирования и модифицирования многих марок сплавов. В цветной металлургии литием обрабатывают сплавы для получения хорошей структуры, пластичности и высокого предела прочности. Хорошо известны алюминиевые сплавы, содержащие всего 0,1\% Л., - аэрон и склерон; помимо лёгкости, они обладают высокой прочностью, пластичностью, стойкостью против коррозии и очень перспективны для авиастроения. Добавка 0,04\% Л. к свинцово-кальциевым подшипниковым сплавам повышает их твёрдость и понижает трение. Соединения Л. используются для получения пластичных смазок (См. Пластичные смазки). По значимости в современной технике Л. - один из важнейших редких элементов.

В. Е. Плющев.

Литий в организме. Л. постоянно входит в состав живых организмов, однако его биологическая роль выяснена недостаточно. Установлено, что у растений Л. повышает устойчивость к болезням, усиливает фотохимическую активность хлоропластов в листьях (томаты) и синтез никотина (табак). Способность концентрировать Л. сильнее всего выражена среди морских организмов у красных и бурых водорослей, а среди наземных растений - у представителей семейства Ranunculaceae (василистник, лютик) и семейства Solanaceae (дереза). У животных Л. концентрируется главным образом в печени и лёгких.

Лит.: Плющев В. Е., Степин Б. Д., Химия и технология соединений лития, рубидия и цезия, М., 1970; Ландольт П., Ситтиг М., Литий, в кн.: Справочник по редким металлам, пер. с англ., М., 1965.

литий         
Л'ИТИЙ, лития, мн. нет, ·муж. (от ·греч. lithios - каменный) (минер., ·хим. ). Химический элемент - серебристобелый, мягкий, очень легкий щелочный металл, не встречающийся в природе в чистом виде, а только в виде солей.
Литий-иодный элемент         
Литий-йодный элемент
Литий-йодный элемент — это первичный химический источник тока, в котором в качестве анода используется литий.
Литий-ионный аккумулятор         
  • Литий-ионный аккумулятор сотового телефона Siemens, призматический
  • гибридного автомобиля]]
  • Литий-ионный аккумулятор. Схема работы
  • Вздувшийся литий-ионный аккумулятор в плоском алюминиевом корпусе типоразмера ENEL10 (Li-42B, NP-45). Бумажная этикетка снята
  • плата]] защиты) цилиндрического литий-ионного аккумулятора, конструкционно припаянный к отрицательному контакту аккумулятора и обратной фольгированной стороной выполняющий его функции. На снимке частично демонтирован и отсоединён от проводника, идущего к положительному контакту аккумулятора
  • При использовании литий-ионных аккумуляторов в составе батарей без балансирующего устройства часть из них окажется переразряженной (B) при работе батареи или перезаряженной (C) либо не дозаряженной (D) до номинальной ёмкости во время зарядки батареи
Литий-ионные батареи; Li-Ion; Литиевый аккумулятор; Li-ion; Ионный аккумулятор
Литий-ионный аккумулятор (Li-ion) — тип электрического аккумулятора, который широко распространён в современной бытовой электронной технике и находит своё применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны, ноутбуки, цифровые фотоаппараты, видеокамеры и электромобили. В 2019 году Уиттингем, Гуденаф и Ёсино получили Нобелевскую премию по химии с формулировкой «За развитие литий-ионных аккумуляторов».
Лития хлорид         
ХИМИЧЕСКОЕ СОЕДИНЕНИЕ
Лития хлорид; LiCl; Хлористый литий

литий хлористый, LiCI, соль, бесцветные кристаллы, плотность 2,07 г/см3, tпл. 614°С; tkип. 1382°С. Л. х. весьма гигроскопичен, расплывается на воздухе; в 100 г воды при 20°С растворяется 78,5 г Л. х. Растворим во многих органических растворителях. Л. х. обычно получают растворением карбоната Li2CO3 или гидроокиси LiOH в соляной кислоте. В промышленности Л. х. служит для получения металлического лития электролизом из расплава. Благодаря способности поглощать аммиак, амины, пары воды и др. газообразные вещества Л. х. (обычно в виде 40\%-ного раствора) применяют для кондиционирования воздуха; используют также в производстве флюсов для плавок металлов и сварки Al, Mg и лёгких сплавов.

Литий-титанатный аккумулятор         
SCIB
Литий-титанатный аккумулятор (LTO) — вариант литий-ионных аккумуляторов, использующий пентатитанат лития (Li4Ti5O12) в качестве анода вместо графита, применяемого в большинстве других вариантов. Для увеличения площади анод имеет нанокристаллическое строение.

Википедия

Литий

Ли́тий (химический символ — Li, от лат. Lithium) — химический элемент 1-й группы (по устаревшей классификации — главной подгруппы первой группы, IA), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 3.

Как простое вещество литий — это очень лёгкий (обладает наименьшей плотностью среди всех металлов), мягкий щелочной металл серебристо-белого цвета.

Что такое Литий - определение