Логические диаграммы - определение. Что такое Логические диаграммы
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Логические диаграммы - определение

В ЛОГИКЕ ДЕЙСТВИЕ, ВСЛЕДСТВИЕ КОТОРОГО ПОРОЖДАЮТСЯ НОВЫЕ ПОНЯТИЯ, С ИСПОЛЬЗОВАНИЕМ УЖЕ СУЩЕСТВУЮЩИХ
Логические операции; Логические связки; Пропозициональная связка
Найдено результатов: 50
Логические диаграммы      

графический (геометрический, точнее - топологический) аппарат математической логики (См. Логика). Идея Л. д. была известна ещё в средние века, развивалась затем Г. В. Лейбницем, но впервые достаточно подробно и обоснованно была изложена Л. Эйлером в "Письмах... к немецкой принцессе" (1768) - т. н. круги Эйлера. Отношения между классами (объёмами понятий) с тех пор принято изображать с помощью систем взаимно пересекающихся кругов (или любых других односвязных областей); объединению классов соответствует при этом объединение (теоретико-множественное, см. Множеств теория) изображающих их областей, пересечению - пересечение, дополнению (до универсального класса) - дополнение до некоторой "стандартной" объемлющей области (например, прямоугольника). Отношению включения между изображаемыми классами при этом соответствует одноимённое отношение между их изображениями (причём случаи, когда объемлющий класс совпадает с объемлемым и когда он существенно шире последнего, здесь не различаются). В дальнейшем идея Л. д. была развита и усовершенствована; особенно отчётливый вид она приобрела в работах Дж. Венна. (Оригинальный метод построения Л. д. был предложен также английским математиком Ч. Доджсоном, известным как детский писатель под псевдонимом Л. Кэрролл). Аппарат диаграмм Венна основан на центральной для алгебры логики (См. Алгебра логики) идее разложения логических функций на "конституэнты"; он позволяет решать единообразным методом ряд задач логики высказываний (См. Логика высказываний) и логики одноместных предикатов (см. Логика предикатов), обзор следствий из данных посылок, решение логических уравнений (при любом конечном числе переменных) и др., вплоть до простого и изящного решения разрешения проблемы (См. Разрешения проблема). Аппарат Л. д. распространён и на классическое исчисление многоместных предикатов, а также оказывается весьма удобным средством для решения ряда задач из приложений математической логики к теории автоматов.

Лит.: Кутюра Л.,: Алгебра логики, пер. с франц., Одесса, 1909; Кузич ев А. С., Диаграммы Венна. История и применения. М., 1968 (см. лит.); Venn J., Symbolic logic, 2 ed., L. - N. Y., 1894.

Ю. А. Гастев.

Диаграмма Венна         
  • Пример получения произвольных кругов Эйлера из диаграмм Венна с пустыми (чёрными) множествами
  • 22 (из 256) существенно различных диаграмм Венна с 3 кругами ''(сверху)'' и соответствующие им ''диаграммы Эйлера'' ''(снизу)''
Диаграммы Венна; Диаграммы Эйлера-Венна; Диаграммы Эйлера — Венна; Диаграммы Венна — Эйлера; Диаграмма Венна — Эйлера; Диаграммы Венна - Эйлера; Диаграмма Венна - Эйлера; Диаграммы Венна-Эйлера; Диаграмма Венна-Эйлера; Диаграмма Эйлера — Венна; Диаграммы Эйлера - Венна; Диаграмма Эйлера - Венна; Диаграмма Эйлера-Венна
Диаграмма Венна (также используется название диаграмма Эйлера — Венна) — схематичное изображение всех возможных отношений (объединение, пересечение,
Фейнмана диаграммы         
  • Две диаграммы 8-го порядка, которые использовались для расчёта значения постоянной тонкой структуры в 2012 году
  • 1995}} .
ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ МАТЕМАТИЧЕСКИХ УРАВНЕНИЙ, ОПИСЫВАЮЩИХ ВЗАИМОДЕЙСТВИЯ СУБАТОМНЫХ ЧАСТИЦ В РАМКАХ КВАНТОВОЙ ТЕОРИИ ПОЛЯ
Диаграмма Фейнмана; Фейнмана диаграммы; Фейнмановская диаграмма; Фейнмановские диаграммы; Графики Фейнмана; График Фейнмана

Фейнмана графики, графический метод теоретического анализа рассеяния частиц и др. физических процессов и вычисления их амплитуд. Предложен Р. Фейнманом в 1949, сыграл важнейшую роль в развитии квантовой электродинамики. Ф. д. нашли широкое применение в квантовой теории поля, квантовой механике и статистической физике.

Основное понятие в методе Ф. д. - функция распространения, или пропагатор. Движению частицы в квантовой теории ставится в соответствие процесс распространения волнового поля, поле же в каждой точке пространства в каждый момент времени является источником вторичных волн (принцип Гюйгенса). Пропагатор характеризует распространение такой волны между двумя пространственно-временными точками. Он является функцией этих двух точек (1 и 2) и изображается линией, их соединяющей (рис. 1). Поле в точке 2 определяется суммой волн, испущенных из всевозможных точек 1.

Взаимодействие в квантовой теории рассматривается как испускание и поглощение волн (частиц) различного типа. Например, электромагнитное взаимодействие сводится к испусканию или поглощению электронной волной (электроном) электромагнитной волны (фотона). Элементарный акт такого взаимодействия изображается графически диаграммой рис. 2, в которой прямые линии - пропагаторы электрона, волнистая - фотона. Эта диаграмма означает, что при распространении электронной волны из 1 в 2 в точке 3 появилось электромагнитное поле, испущенное в точке 4 - точке перессчения линий, называемой вершиной диаграммы. С помощью диаграммы рис. 2 как основного элемента можно построить Ф. д. для любого электродинамического процесса. Например, диаграммы рис. 3 и 4 изображают соответственно рассеяние (столкновение) электрона и фотона на электроне. Внешние линии изображают частицы (электрон или фотон) до и после столкновения, а внутренние элементы (вершины и линии) - механизм взаимодействия, который сводится на рис. 3 к излучению электромагнитной волны одним электроном и поглощению её вторым, а на рис. 4 электронной волны. Т. о., распространению волны между двумя вершинами (т. е. внутренние линии) отвечает движение соответствующей частицы в виртуальном состоянии (см. Виртуальные частицы). Одна и та же внешняя линия может изображать как начальную частицу, так и конечную античастицу (См. Античастицы) (и наоборот). Например, диаграмма рис. 4 может изображать (следует смотреть на неё не слева направо, а снизу вверх) аннигиляцию пары электрон-позитрон в два фотона.

Приведённые Ф. д. отвечают минимальному числу элементарных взаимодействий, т. е. вершин в диаграмме, приводящих к данному процессу. Но они не единственно возможные. Данный тип столкновения частиц определяется внешними линиями (начальными и конечными частицами), внутренняя же часть диаграммы может быть более сложной. Например, для рассеяния фотона электроном можно привести в дополнение к диаграмме рис. 4 Ф. д., изображенные на рис. 5, и многие другие.

На диаграммах рис. 5 электрон (падающий или виртуальный) испускает виртуальный фотон, который поглощается конечным электроном (на последней диаграмме этот фотон рождает виртуальную пару электрон-позитрон, аннигилирующую в фотон). Если взаимодействие мало, то Ф. д. рис. 5 и другие, содержащие большее число вершин, т. е. большее число элементарных взаимодействий, дадут лишь малые поправки (они называются радиационными поправками (См. Радиационные поправки)) по сравнению с вкладом основной диаграммы рис. 4, и можно ограничиться небольшим числом диаграмм. Это справедливо для квантовой электродинамики, в которой каждая дополнительная внутренняя линия вносит в амплитуду рассеяния (См. Амплитуда рассеяния) рассматриваемого процесса множитель где е - заряд электрона, η - постоянная Планка, с - скорость света; поэтому квантовая электродинамика достигла высокой точности предсказаний. Если же взаимодействие не мало, то следует учитывать бесконечное число диаграмм, и это - трудность квантовой теории поля.

Ф. д. используются также для изображения процессов, обусловленных др. типами взаимодействий. На рис. 6 приведен распад π0-мезона; здесь пунктирная линия - π0, сплошные линии - нуклон и антинуклон (или кварк (См. Кварки) и антикварк), левая вершина - сильное взаимодействие (См. Сильные взаимодействия), волнистые линии - фотоны, а соответствующие (правые) вершины - электромагнитные взаимодействия. На рис. 7 приведён распад заряженного π-мезона; пунктирная линия - π + -), линии в петле - нуклон и антинуклон (кварк и антикварк), волнистая линия - гипотетический W + (W-)-meзон, переносчик слабого взаимодействия (См. Слабые взаимодействия), сплошные линии справа - мюон и нейтрино.

Каждому элементу Ф. д. - внешним линиям, вершинам, внутренним линиям соответствует некоторый множитель; поэтому, начертив ф. д., можно сразу написать аналитическое выражение для амплитуды рассеяния данного процесса.

Лит.: Швебер С., Введение в релятивистскую квантовую теорию поля, [пер. с англ.], М., 1963, гл. 14.

В. Б. Берестецкий.

Рис. 1. к ст. Фейнмана диаграммы.

Рис. 2. к ст. Фейнмана диаграммы.

Рис. 3. к ст. Фейнмана диаграммы.

Рис. 4. к ст. Фейнмана диаграммы.

Рис. 5. к ст. Фейнмана диаграммы.

Рис. 6. к ст. Фейнмана диаграммы.

Рис. 7. к ст. Фейнмана диаграммы.

Диаграммы Фейнмана         
  • Две диаграммы 8-го порядка, которые использовались для расчёта значения постоянной тонкой структуры в 2012 году
  • 1995}} .
ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ МАТЕМАТИЧЕСКИХ УРАВНЕНИЙ, ОПИСЫВАЮЩИХ ВЗАИМОДЕЙСТВИЯ СУБАТОМНЫХ ЧАСТИЦ В РАМКАХ КВАНТОВОЙ ТЕОРИИ ПОЛЯ
Диаграмма Фейнмана; Фейнмана диаграммы; Фейнмановская диаграмма; Фейнмановские диаграммы; Графики Фейнмана; График Фейнмана
Диаграмма Фейнмана — графическое представление математических уравнений, описывающих взаимодействия субатомных частиц в рамках квантовой теории поля. Этот инструмент изобрёл американский физик Ричард Фейнман в конце 1940-х годов, во время его работы в Корнельском университете, для выполнения расчётов рассеяния частиц.
Диаграмма Пурбе         
  • Диаграмма Пурбе для системы <chem>Mn - H2O</chem>
Диаграммы Пурбе
Диаграмма Пурбе (диаграмма преобладающих форм, E-pH диаграмма) — диаграмма, наглядно отображающая термодинамически устойчивые формы существования элементов (ионов, молекул, атомных кристаллов и металлов) в растворах при различных значениях водородного показателя pH и окислительно-восстановительного потенциала E. Предложена Марселем Пурбе.
ЛОГИЧЕСКАЯ ОПЕРАЦИЯ         
операция над числами (обычно в двоичной системе счисления), выполняемая по правилам алгебры логики. Основные и наиболее распространенные логические операции, реализуемые в ЭВМ, - дизъюнкция, конъюнкция, отрицание; при составлении программ для ЭВМ более сложные логические операции обычно сводят к трем основным.
Логическая операция         
В логике логи́ческими опера́циями называют действия, вследствие которых порождаются новые понятия, с использованием уже существующих. В более узком смысле, понятие логической операции используется в математической логике и программировании.
Логические операции         

логические связки, логические операторы, функции, преобразующие высказывания или пропозициональные формы (т. е. выражения логики предикатов (См. Логика предикатов), содержащие переменные (См. Переменная) и обращающиеся в высказывания при замене последних какими-либо конкретными их значениями) в высказывания или пропозициональные формы. Л. о. можно разделить на две основные группы: Кванторы и пропозициональные (сентенциональные) связки. Кванторы играют для формализованных языков математической логики ту же роль, которую играют для естественного языка т. н. "количественные" ("кванторные") слова: "все", "любой", "некоторый", "существует", "единственный", "не более (менее) чем", количественные числительные и т. п. Характерной особенностью кванторов является - в случае нефиктивного их применения - понижение числа свободных переменных в преобразуемом выражении: применение квантора к выражению, содержащему n свободных переменных, приводит, вообще говоря, к выражению, содержащему n - 1 свободную переменную, в частности, пропозициональную форму с одной свободной переменной применение квантора (по этой переменной) преобразует в высказывание.

Пропозициональные связки (в отличие от кванторов, введение которых знаменует переход к логике предикатов) употребляются уже в самой элементарной части логики - в логике высказываний (См. Логика высказываний). В формализованных логических и логико-математических языках они выполняют функции, вполне аналогичные функциям союзов и союзных слов, употребляемых для образования сложных предложений в естественных языках. Так, отрицание ⌉ истолковывается как частица "не", конъюнкция & истолковывается как союз "и", дизъюнкция ﹀ - как (неразделительное) "или", импликация ⊃ - как оборот "если..., то...", эквиваленция Логические операции - как оборот "тогда и только тогда, когда" и т. п. При этом, однако, соответствие между Л. о. и средствами естественного языка отнюдь не взаимно однозначно. Во-первых, потому, что высказывания, по определению, могут принимать лишь два "истинностных значения": "истину" ("и") и "ложь" ("л"), так что пропозициональные Л. о. можно рассматривать как различные функции, отображающие некоторую область из двух элементов в себя; поэтому число различных n-местных (т. е. от n аргументов) Л. о. определяется из чисто комбинаторных соображений - оно равно 2n. Во-вторых, в формализованных языках математической логики игнорируются любые смысловые (и тем более стилистические) оттенки значений союзов, кроме тех, что непосредственно определяют истинностное значение получающегося сложного предложения. В свою очередь, в качестве Л. о. рассматриваются подчас и такие связки, содержательные аналоги которых в обычном языке, как правило, не имеют специальных наименований; таков, например, "штрих Шеффера" ∣ в нижеследующей таблице, где приведён полный перечень всех двуместных пропозициональных Л. о. (в первых двух столбцах помещены истинностные значения некоторых "исходных" высказываний р и q, в остальных - значения высказываний, образуемых из них посредством указанных сверху Л. о.).

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| | Тождественная | Тождественная | P | Отррицание | q | Отрицание | Конъюнкция | Антиконъюнкция | Дизъюнкция | Антидизъюнкция | Эквиваленция | Антиэквиваленция | Импликация | Антиимпликация | Обратная | Обратная |

| | истина | ложь | | p | | q | | (штрих | | | | | | | импликация | антиимпликация |

| | | | | | | | | Шеффера) | | | | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| p | q | и | л | p | p | q | q | p&q | P)q | p∨q | pq | pЛогические операцииq | pq | p⊃q | pq | p⊂q | p⊄q |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| и | и | и | л | и | л | и | л | и | л | и | л | и | л | и | л | и | л |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| и | л | и | л | и | л | л | и | л | и | и | л | л | и | л | и | и | л |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| л | и | и | л | л | и | и | л | л | и | и | л | л | и | и | л | л | и |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| л | л | и | л | л | и | л | и | л | и | л | и | и | л | и | л | и | л |

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Поскольку в таблице сведены все мыслимые двуместные Л. о., соответствующие всевозможным "четырехбуквенным словам" из "и" и "л", записанным по вертикали в её столбцах, то естественно, что среди этих 17 Л. о. есть и "вырожденные" случаи: первые две "связки" вообще не зависят ни от каких "аргументов" - это константы "и" и "л" (понятно, что таких "нульместных" связок имеется ровно ), далее идут "одноместных связок" (каждая из которых зависит лишь от одного из аргументов р или q) и только затем уже 16-2-4 = 10 собственно двуместных Л. о. Можно далее рассматривать трёхместных Л. о. и т. д.; оказывается, однако, что уже небольшой части приведённых Л. о. достаточно для того, чтобы посредством их суперпозиций (т. е. последовательного применения) выразить любые n-местные Л. о. для любого натурального n. Такими функционально полными наборами связок являются, например, ⌉ и &, ⌉ и ﹀, ⌉ и ⊃ и даже одна-единственная связка ∣. Поскольку логика высказываний может быть изоморфно (см. Изоморфизм) интерпретирована в терминах логики классов (См. Логика классов), для каждой Л. о. имеется аналогичная теоретико-множественная операция; совокупность таких операций над множествами (классами) образует т. н. алгебру множеств. См. Алгебра логики.

Лит.: Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960, §§ 05, 06 и 15.

Ю. А. Гастев.

Логическая операция         

в ЦВМ, поразрядная операция над кодами произвольной длины по правилам алгебры логики. Л. о. производится над всеми цифрами кодов одна и та же, при этом каждая цифра результата зависит не более чем от одной цифры одного или нескольких кодов. В ЦВМ Л. о. выполняются в большинстве случаев над двоичными кодами. К числу основных и наиболее распространённых Л. о. относятся операции отрицания, конъюнкции, дизъюнкции и эквивалентности (см. табл. при ст. Алгебра логики). Эти Л. о. достаточно просто реализуются физическими элементами ЦВМ, а более сложные Л. о. могут быть программно сведены, например, только к трём Л. о.: отрицания, конъюнкции и дизъюнкции. Примеры использования Л. о.: отрицание - инвертирование при преобразовании прямого кода в обратный или дополнительный код; конъюнкция - логическое умножение для "выделения" любых частей кода; дизъюнкция - логическое сложение при формировании новых команд из нескольких других команд; эквивалентность - равнозначность при определении поразрядного тождества кодов. К Л. о. часто относят также сдвиг, проверку равенства числа нулю, проверку знака числа, получение абсолютной величины числа и др. В универсальных ЦВМ Л. о. обеспечивают управление ходом выполнения программ и взаимосвязь в программах, формирование новых команд, перекодирование данных, поиск информации по логическим шкалам и др. Л. о. являются основой для создания специализированных логических цифровых машин, для решения задач анализа переключательных схем с целью их минимизации и задач синтеза, т. е. составления и подбора элементарных схем, посредством которых можно создавать более сложные схемы для реализаций заданных функций.

А. В. Гусев.

Диаграмма Вороного         
  • Диаграмма Вороного случайного множества точек на плоскости
  • 215x215пкс
  • 215x215пкс
ПОНЯТИЕ В МАТЕМАТИКЕ
Диаграммы Вороного; Мозаика Вороного; Разбиение Вороного; Разбиение Дирихле; Мозаика Дирихле; Область Вороного; Многогранник Вороного
Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множестваФ. Препарата, М.

Википедия

Логическая операция

В логике логи́ческими опера́циями называют действия, вследствие которых порождаются новые понятия, с использованием уже существующих. В более узком смысле, понятие логической операции используется в математической логике и программировании.

Что такое Лог<font color="red">и</font>ческие диагр<font color="red">а</font>ммы - определение