МЕТАЛЛОВ ТЕРМИЧЕСКАЯ ОБРАБОТКА - определение. Что такое МЕТАЛЛОВ ТЕРМИЧЕСКАЯ ОБРАБОТКА
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое МЕТАЛЛОВ ТЕРМИЧЕСКАЯ ОБРАБОТКА - определение

Обработка металлов; Металлообрабатывающий завод
  • Производство стали. Гравюра в книге ''[[Георгий Агрикола]]''. О горном деле и металлургии. 1556
  • Кара]], [[Того]]
  • Гарри Трумэн]]»
Найдено результатов: 185
МЕТАЛЛОВ ТЕРМИЧЕСКАЯ ОБРАБОТКА      
определенный временной цикл нагрева и охлаждения, которому подвергают металлы для изменения их физических свойств. Термообработка в обычном смысле этого термина проводится при температурах, не достигающих точки плавления. Процессы плавления и литья, оказывающие существенное влияние на свойства металла, в это понятие не включаются. Изменения физических свойств, вызываемые термической обработкой, обусловлены изменениями внутренней структуры и химических соотношений, происходящими в твердом материале. Циклы термической обработки представляют собой различные комбинации нагрева, выдерживания при определенной температуре и быстрого или медленного охлаждения, соответствующие тем структурным и химическим изменениям, которые требуется вызвать.
Зернистая структура металлов. Всякий металл обычно состоит из множества соприкасающихся друг с другом кристаллов (называемых зернами), как правило, имеющих микроскопические размеры, но иногда и видимых простым глазом. Внутри каждого зерна атомы расположены так, что образуют правильную трехмерную геометрическую решетку. Тип решетки, называемый кристаллической структурой, является характеристикой материала и может быть определен методами рентгеноструктурного анализа. Правильное расположение атомов сохраняется в пределах всего зерна, если не считать небольших нарушений, таких, как отдельные узлы решетки, случайно оказавшиеся вакантными. Все зерна имеют одинаковую кристаллическую структуру, но, как правило, по-разному ориентированы в пространстве. Поэтому на границе двух зерен атомы всегда менее упорядочены, чем внутри них. Этим объясняется, в частности, то, что границы зерен легче поддаются травлению химическими реагентами. На полированной плоской поверхности металла, обработанной подходящим травителем, обычно выявляется четкая картина границ зерен. Физические свойства материала определяются свойствами отдельных зерен, их воздействием друг на друга и свойствами границ зерен. Свойства металлического материала существенным образом зависят от размеров, формы и ориентации зерен, и цель термической обработки состоит в том, чтобы управлять этими факторами.
Атомные процессы при термической обработке. При повышении температуры твердого кристаллического материала его атомам становится все легче переходить из одного узла кристаллической решетки в другой. Именно на этой диффузии атомов и основана термическая обработка. Наиболее эффективный механизм движения атомов в кристаллической решетке можно представить себе как движение вакантных узлов решетки, которые всегда имеются в любом кристалле. При повышенных температурах благодаря увеличению скорости диффузии ускоряется процесс перехода неравновесной структуры вещества в равновесную. Температура, при которой заметно повышается скорость диффузии, неодинакова для разных металлов. Она обычно выше для металлов с высокой температурой плавления. В вольфраме с его температурой плавления, равной 3387. C, рекристаллизация не происходит даже при красном калении, тогда как термическую обработку алюминиевых сплавов, плавящихся при низких температурах, в некоторых случаях оказывается возможным проводить при комнатной температуре.
Во многих случаях термической обработкой предусматривается очень быстрое охлаждение, называемое закалкой, цель которого - сохранить структуру, образовавшуюся при повышенной температуре. Хотя, строго говоря, такую структуру нельзя считать термодинамически устойчивой при комнатной температуре, практически она вполне устойчива благодаря низкой скорости диффузии. Очень многие полезные сплавы обладают подобной "метастабильной" структурой.
Изменения, вызываемые термической обработкой, могут быть двух основных видов. Во-первых, и в чистых металлах, и в сплавах возможны изменения, затрагивающие только физическую структуру. Это могут быть изменения напряженного состояния материала, изменения размеров, формы, кристаллической структуры и ориентации его кристаллических зерен. Во-вторых, изменяться может и химическая структура металла. Это может выражаться в сглаживании неоднородностей состава и образовании выделений другой фазы, во взаимодействии с окружающей атмосферой, созданной для очистки металла или придания ему заданных поверхностных свойств. Изменения того и другого вида могут происходить одновременно. См. МЕТАЛЛОВЕДЕНИЕ ФИЗИЧЕСКОЕ
.
Снятие напряжений. Деформация в холодном состоянии повышает твердость и хрупкость большинства металлов. Иногда такое "деформационное упрочнение" желательно. Цветным металлам и их сплавам обычно придают ту или иную степень твердости холодной прокаткой. Малоуглеродистые стали тоже часто упрочняют холодным деформированием. Высокоуглеродистые стали, доведенные холодной прокаткой или холодным волочением до повышенной прочности, необходимой, например, для изготовления пружин, обычно подвергают отжигу для снятия напряжений - нагревают до сравнительно низкой температуры, при которой материал остается почти столь же твердым, как и раньше, но в нем исчезают неоднородности распределения внутренних напряжений. Благодаря этому ослабевает тенденция к растрескиванию, особенно в коррозионных средах. Такое снятие напряжений происходит, как правило, за счет локального пластического течения в материале, не приводящего к изменениям общей структуры.
Рекристаллизация. При разных методах обработки металлов давлением нередко требуется сильно изменять форму заготовки. Если формообразование должно проводиться в холодном состоянии (что часто диктуется практическими соображениями), то приходится разбивать процесс на ряд ступеней, в промежутках между ними проводя рекристаллизацию. После первой ступени деформации, когда материал упрочнен настолько, что дальнейшее деформирование может привести к разрушению, заготовку нагревают до температуры, превышающей температуру отжига для снятия напряжений, и выдерживают для рекристаллизации. Благодаря быстрой диффузии при такой температуре за счет атомной перестройки возникает совершенно новая структура. Внутри зеренной структуры деформированного материала начинают расти новые зерна, которые с течением времени полностью ее заменяют. Сначала образуются мелкие новые зерна в местах наибольшего нарушения старой структуры, а именно на старых границах зерен. При дальнейшем отжиге атомы деформированной структуры перестраиваются так, что тоже становятся частью новых зерен, которые растут и в конце концов поглощают всю старую структуру. Заготовка сохраняет прежнюю форму, но она теперь - из мягкого, ненапряженного материала, который может быть подвергнут новому циклу деформирования. Такой процесс можно повторять несколько раз, если этого требует заданная степень деформирования.
Холодная обработка - это деформирование при температуре, слишком низкой для рекристаллизации. Для большинства металлов данному определению соответствует комнатная температура. Если деформирование производится при достаточно высокой температуре, так что рекристаллизация успевает следовать за деформированием материала, то такая обработка называется горячей. Пока температура остается достаточно высокой, его можно сколь угодно сильно деформировать. Горячее состояние металла определяется, в первую очередь, тем, насколько его температура близка к точке плавления. Высокая ковкость свинца означает, что он легко рекристаллизуется, т.е. его "горячую" обработку можно проводить при комнатной температуре.
Контроль текстуры. Физические свойства зерна, вообще говоря, неодинаковы в разных направлениях, так как каждое зерно - это монокристалл с собственной кристаллической структурой. Свойства металлического образца представляют собой результат усреднения по всем зернам. В случае беспорядочной ориентации зерен общие физические свойства одинаковы во всех направлениях. Если же некоторые кристаллические плоскости или атомные ряды большинства зерен параллельны, то свойства образца становятся "анизотропными", т.е. зависящими от направления. В этом случае у чашечки, полученной глубоким выдавливанием из круглой пластинки, будут "язычки", или "фестоны", на верхней кромке, объясняющиеся тем, что в одних направлениях материал деформируется легче, чем в других. При механическом формообразовании анизотропия физических свойств, как правило, нежелательна. Но в листах магнитных материалов для трансформаторов и других устройств очень желательно, чтобы направление легкого намагничения, которое в монокристаллах определяется кристаллической структурой, во всех зернах совпадало с заданным направлением магнитного потока. Таким образом, "предпочтительная ориентация" (текстура) может быть желательна или нежелательна в зависимости от назначения материала. Вообще говоря, при рекристаллизации материала его предпочтительная ориентация меняется. Характер этой ориентации зависит от состава и чистоты материала, от вида и степени холодной деформации, а также от длительности и температуры отжига.
Контроль размера зерен. Физические свойства металлического образца в значительной мере определяются средним размером зерен. Наилучшим механическим свойствам почти всегда соответствует мелкозернистая структура. Уменьшение размера зерна часто является одной из целей термической обработки (а также плавления и литья). При повышении температуры ускоряется диффузия, а потому средний размер зерна увеличивается. Границы зерен смещаются так, что более крупные зерна растут за счет мелких, которые, в конце концов, исчезают. Поэтому завершающие процессы горячей обработки обычно проводят при возможно более низкой температуре, чтобы были минимальны размеры зерен. Часто специально предусматривают низкотемпературную горячую обработку, в основном для уменьшения размеров зерен, хотя того же результата можно достичь холодной обработкой с последующей рекристаллизацией.
Гомогенизация. Процессы, о которых говорилось выше, протекают и в чистых металлах, и в сплавах. Но существует ряд других процессов, которые возможны лишь в металлических материалах, содержащих два или большее число компонентов. Так, например, в отливке сплава почти наверняка будут неоднородности химического состава, что определяется неравномерным процессом затвердевания. В затвердевающем сплаве состав твердой фазы, образующейся в каждый данный момент, не таков, как в жидкой, находящейся с ней в равновесии. Следовательно, состав твердого вещества, возникшего в начальный момент затвердевания, будет иным, нежели в конце затвердевания, а это и ведет к пространственной неоднородности состава в микроскопическом масштабе. Такая неоднородность устраняется простым нагреванием, особенно в сочетании с механическим деформированием.
Очистка. Хотя чистота металла определяется в первую очередь условиями плавления и литья, очистка металла часто достигается термической обработкой в твердом состоянии. Примеси, содержащиеся в металле, реагируют на его поверхности с атмосферой, в которой он нагревается; так, атмосфера водорода или другого восстановителя может превратить значительную часть оксидов в чистый металл. Глубина такой очистки зависит от способности примесей диффундировать из объема на поверхность, а поэтому определяется длительностью и температурой термической обработки.
Выделение вторичных фаз. В основе большинства режимов термической обработки сплавов лежит один важный эффект. Он связан с тем, что растворимость в твердом состоянии компонентов сплава зависит от температуры. В отличие от чистого металла, в котором все атомы одинаковы, в двухкомпонентном, например твердом, растворе имеются атомы двух разных сортов, случайно распределенные по узлам кристаллической решетки. Если увеличивать количество атомов второго сорта, то можно достичь состояния, когда они не смогут просто замещать атомы первого сорта. Если количество второго компонента превышает этот предел растворимости в твердом состоянии, в равновесной структуре сплава появляются включения второй фазы, отличающиеся по составу и структуре от исходных зерен и обычно разбросанные между ними в виде отдельных частиц. Такие частицы второй фазы могут оказывать сильное влияние на физические свойства материала, что зависит от их размера, формы и распределения. Эти факторы можно изменять термической обработкой.
Растворимость в твердом состоянии обычно увеличивается с повышением температуры, как показано на рис. 1. Здесь видно, что при равновесных условиях материал, который по своему составу и температуре лежит слева от кривой, существует в виде одной фазы - твердого раствора. Справа же от кривой состав и температура соответствуют структуре, содержащей вторую фазу, каким-то образом диспергированную в первой. Если состав сплава определяется абсциссой X0, то его равновесная структура может быть либо однофазной, либо двухфазной в зависимости от температуры. График, по осям которого откладываются состав и температура, показывающий фазы в равновесных условиях, называется фазовой диаграммой или диаграммой состояний. Следует иметь в виду, что такая диаграмма (график рис. 1 лишь часть ее) иллюстрирует структуры, которые могут существовать лишь в равновесных условиях, а при низких температурах для достижения равновесия требуется много времени. Если сплав состава X0 поддерживать при температуре T1, то в конце концов он станет однофазным твердым раствором. Вторая фаза, присутствовавшая в нем первоначально, исчезнет вследствие диффузии ее атомов, которые станут частью твердого раствора. Такая обработка называется термической обработкой на твердый раствор. Если после этого медленно охлаждать материал, то при температуре T0 начнут возникать частицы второй фазы, которые будут расти при дальнейшем понижении температуры. Это приведет к тому, что образуется небольшое количество довольно крупных частиц, наличие которых будет сказываться, например, на механических свойствах. Однако процесс выделения второй фазы можно проводить иначе. Если твердый раствор, соответствующий температуре T1, достаточно быстро охладить до комнатной температуры, то сохранится однофазный твердый раствор. Хотя его равновесная структура должна быть двухфазной, скорость диффузии при комнатной температуре столь мала, что структуру твердого раствора можно считать практически стабильной. Если же теперь материал нагреть до температуры, не выходящей за пределы двухфазной области, но обеспечивающей быструю диффузию, то можно вызвать выделение второй фазы в высокодисперсной форме. Такую обработку часто называют старением раствора. Выбирая нужную длительность и температуру старения, можно контролировать размеры зерна, что позволяет добиться дисперсности частиц, существенно повышающей прочность материала.
Таким способом можно упрочнять многие практически полезные сплавы, например, серебряный припой "стерлинг", содержащий несколько процентов меди. Важным примером могут служить алюминиевые сплавы, содержащие несколько процентов меди и составляющие основу дюралюмина. Упрочняющим старением таких сплавов достигается очень высокое отношение предела прочности к весу. Особенно интересно то, что их упрочняющее старение в какой-то мере может происходить за счет диффузии при комнатной температуре. После термической обработки на твердый раствор и закалки до комнатной температуры прочность таких сплавов постепенно увеличивается в 2 раза на протяжении нескольких дней вследствие выделения второй фазы, происходящего при комнатной температуре. Чтобы сохранить состояние твердого раствора, материал приходится хранить при пониженной температуре. Например, дюралюминовая заклепка, выдерживаемая в сухом льду после термической обработки на твердый раствор, остается мягкой до установки на место, а затем за несколько дней сама по себе упрочняется при комнатной температуре.
Другой интересный пример - сплавы "алнико" (на железной основе, содержащие алюминий, никель и кобальт) для постоянных магнитов. Чтобы такой сплав приобрел магнитные свойства, оптимальные для постоянных магнитов, его после термической обработки на твердый раствор подвергают закалке и старению при условиях, обеспечивающих определенные размеры, форму и распределение частиц вторичных фаз. Для повышения эффективности старение проводят в магнитном поле.
Кинетика и закалка. Фазовую диаграмму, представленную на рис. 1 и показывающую фазовую структуру, которой будет обладать сплав, когда достигнет равновесного состояния, следует дополнить данными о скорости его приближения к такому состоянию. На графике рис. 2 по вертикальной оси тоже откладывается температура, но по горизонтальной - не состав, а время. Кривая этого графика, имеющая С-образную форму, описывает поведение сплава, состав которого соответствует точке X0, T0 на рис. 1. Если образец состава X0 выдержать при температуре выше T0 до завершения обработки на твердый раствор, а затем закалить до более низкой температуры, скажем T2, то после некоторого периода "ожидания" начнут возникать частицы выделившейся второй фазы и их количество будет расти, пока не будет достигнут равновесный уровень, отвечающий этой температуре. Кривая рис. 2 показывает время, необходимое при разных температурах для того, чтобы началось такое фазовое превращение в сплаве, первоначально подвергнутом термической обработке на твердый раствор. Аналогичную С-образную форму имеют кривые, показывающие время, необходимое для полного превращения или для достижения некоторого промежуточного состояния. Форма кривой указывает на то, что скорость превращения нарастает до максимума при некоторой температуре Tm, лежащей значительно ниже T0, а затем снова уменьшается. Это объясняется совместным действием двух противоположных эффектов. При температурах выше T0 стабильной фазой является твердый раствор, и он будет существовать как угодно долго. Если же его охладить до температуры, несколько меньшей T0, то, как явствует из фазовой диаграммы (рис. 1), должно образоваться некоторое количество второй фазы. Но С-образная кривая свидетельствует, что для этого потребуется очень много времени. Дело в том, что в данном случае мала степень охлаждения, т.е. разность температуры T0 и фактической температуры, а именно эта разность является движущей силой процесса перехода к термодинамическому равновесию. Чем больше охлаждение, тем больше движущая сила и тем быстрее движется система к равновесию, на что указывает крутой загиб книзу в левой части С-образной кривой. Однако чем больше понижается температура, тем меньше становится скорость диффузии. Ниже температуры Tm движущая сила продолжает увеличиваться, но подвижность атомов настолько уменьшается, что время, необходимое для превращения, снова начинает увеличиваться и в конце концов становится практически бесконечно большим.
Цель закалки металла после термической обработки на твердый раствор в том, чтобы очень быстро, не дав времени на превращение, охладить его ниже точки Tm до температуры T3, при которой скорость превращения ничтожно мала. Максимально возможная скорость закалки металлического образца (или изделия) определяется скоростью отвода тепла с его поверхности, а также его размерами и коэффициентом теплопроводности. Первый фактор ограничивается кипением закалочной среды (по большей части воды или соляного раствора) и, попросту говоря, всегда одинаков. Поэтому предельные размеры детали, которая может быть закалена без фазового превращения, зависят от теплопроводности ее материала, так как именно теплопроводностью определяется скорость охлаждения в объеме детали, даже если считать бесконечно большой скорость отвода тепла с ее поверхности. См. также МЕТАЛЛОВЕДЕНИЕ ФИЗИЧЕСКОЕ; МЕТАЛЛОВ ОБРАБОТКА ДАВЛЕНИЕМ.
Термическая обработка металлов         
Термической (или тепловой) обработкой называется совокупность операций нагрева, выдержки и охлаждения твёрдых металлических сплавов с целью получения заданных свойств за счёт изменения внутреннего строения и структуры. Тепловая обработка используется либо в качестве промежуточной операции для улучшения обрабатываемости давлением, резанием, либо как окончательная операция технологического процесса, обеспечивающая заданный уровень свойств изделия.
Химико-термическая обработка металлов         
Химико-термическая обработка металлов — нагрев и выдержка металлических (а в ряде случаев и неметаллических) материалов при высоких температурах в химически активных средах (твёрдых, жидких, газообразных).
Холодная штамповка         
  • Схема волочения
  • Схема прокатки
  • Схема прессования

процесс обработки давлением листового или сортового металла, обычно осуществляемый без нагрева заготовки. При Х. ш. процесс изготовления деталей расчленяется на операции и переходы, выполняемые в специализированных штампах. Х. ш. сопровождается упрочнением, т. е. увеличением прочности металла и уменьшением его пластичности, затрудняющим деформирование в последующих операциях. Для устранения вредного влияния упрочнения применяют межоперационную термообработку (рекристаллизационный отжиг). Х. ш. позволяет получать детали высокой точности, с поверхностью хорошего качества, почти не требующие в процессе изготовления обработки резанием. Отсутствие нагрева при Х. ш. создаёт благоприятные предпосылки для механизации и автоматизации технологического процесса, что повышает производительность и улучшает условия труда.

При Х. ш. листового металла (см. также Листовая штамповка) в разделительных операциях разрушение происходит при меньшем внедрении режущих кромок инструмента в заготовку, чем при горячей штамповке листового металла, а сопротивление срезу составляет примерно 0,8 предела прочности. В формоизменяющих операциях Х. ш. листового металла на допустимую степень деформации существенное влияние оказывает упрочнение. Увеличение допустимой степени деформации в операциях Х. ш. достигается созданием оптимальных условий деформирования (схема силового воздействия, конструкция штампа, рациональная конфигурация рабочего инструмента, скорость деформирования, смазка и т.п.). При листовой Х. ш. заготовка получает разные деформации в различных участках и соответственно различное упрочнение. Сочетание рационального распределения деформаций, зависящего от размеров и формы заготовки, а также типа применяемых операций и условий их осуществления, с термическими операциями (как для всей заготовки, так и для отдельных её частей) позволяет получать наилучшие эксплуатационные свойства деталей (жёсткость, прочность, износостойкость и т.п.) при наименьшей массе деталей (облегчённые конструкции).

Х. ш. сортового металла (см. также Объёмная штамповка) разделяется на штамповку в открытых штампах, холодное выдавливание, холодную высадку (См. Холодная высадка). Объёмная Х. ш. осуществляется в штампах, аналогичных штампам объёмной горячей штамповки, обеспечивающих последовательное приближение формы заготовки к форме детали. Вследствие упрочнения процесс Х. ш. обычно расчленяется на большее число операций и переходов, чем при горячей штамповке, а для увеличения пластичности и уменьшения сопротивления деформированию используют межоперационные отжиги. При холодной объёмной штамповке в открытых штампах применяют промежуточную обрезку заусенца, что позволяет уменьшить усилие деформирования и повысить точность размеров штампуемых изделий. Удельные усилия деформирования при холодной объёмной штамповке достигают 3000 Мн/м2, что вынуждает использовать этот процесс только для изготовления деталей небольших размеров. Для уменьшения удельных усилий штамповки применяют смазку, противостоящую выдавливанию с контактных поверхностей при высоких удельных усилиях (например, минеральные масла с наполнителями в виде графита, талька, дисульфида молибдена и т.п.). Холодное выдавливание осуществляется по схемам деформирования, сходным с прессованием металлов (См. Прессование металлов). Используют прямое, обратное, боковое и комбинированное выдавливания, различающиеся направлением течения металла по сравнению с направлением смещения пуансона относительно матрицы. При комбинированном выдавливании в рабочем инструменте имеется несколько каналов, по которым металл вытекает из полости матрицы, причём могут одновременно иметь место элементы прямого, обратного или бокового выдавливания. Холодным выдавливанием получают сплошные и полые детали довольно сложной конфигурации. Схема всестороннего сжатия, при которой происходит холодное выдавливание, обеспечивает увеличение пластичности металла и позволяет получать без разрушения большое формоизменение заготовки. Упрочнение металла, возникающее при холодном выдавливании, ограничивает допустимое формоизменение и вынуждает в ряде случаев использовать межоперационные отжиги; кроме того, из-за больших удельных усилий деформирования допустимое формоизменение обычно ограничивается и прочностью инструмента. Для уменьшения удельных усилий деформирования подбирают рациональные форму и размеры инструмента, применяют различные смазки. Повышенная прочность инструмента достигается использованием высокопрочных инструментальных сталей, рациональной термообработкой пуансонов и матриц, бандажированием матриц и т.п. Из пластичных металлов и сплавов Х. ш. можно получать полые детали с толщиной стенки в десятые и даже сотые доли мм.

Наряду с традиционными методами Х. ш. всё более широкое применение получают беспрессовые виды штамповки (взрывная, электрогидравлическая, электромагнитная и т.д.).

Лит.: Романовский В. П., Справочник по холодной штамповке, 5 изд., Л., 1971.

Е. А. Попов.

ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ         
  • Схема волочения
  • Схема прокатки
  • Схема прессования
совокупность технологических процессов, в которых под действием внешних сил осуществляется пластическое формоизменение металлических заготовок без нарушения их сплошности. Основные виды: прокатка, прессование, волочение, ковка, штамповка.
Обработка металлов давлением         
  • Схема волочения
  • Схема прокатки
  • Схема прессования

группа технологических процессов, в результате которых изменяется форма металлической заготовки без нарушения её сплошности за счёт относительного смещения отдельных её частей, т. е. путём пластической деформации (См. Деформация). Основные виды О. м. д.: прокатка (см. Прокатное производство), прессование, Волочение, Ковка и Штамповка (см. Кузнечно-штамповочное производство). О. м. д. также применяется для улучшения качества поверхности.

Внедрение технологических процессов, основанных на О. м. д., по сравнению с др. видами металлообработки (литьё, обработка резанием) неуклонно расширяется, что объясняется уменьшением потерь металла, возможностью обеспечения высокого уровня механизации и автоматизации технологических процессов.

О. м. д. могут быть получены изделия с постоянным или периодически изменяющимся поперечным сечением (прокатка, волочение, прессование) и штучные изделия разнообразных форм (ковка, штамповка), соответствующие по форме и размерам готовым деталям или незначительно отличающиеся от них. Штучные изделия обычно подвергаются обработке резанием. Объём удаляемого при этом металла зависит от степени приближения формы и размеров поковки или штамповки к форме и размерам готовой детали. В ряде случаев О. м. д. получают изделия, не требующие обработки резанием (болты, винты, большинство изделий листовой штамповки).

О. м. д. может применяться не только для получения заготовок и деталей, но и как отделочная операция после обработки детали резанием (дорнование, обкатка роликами и шариками и т.п.) с целью уменьшения шероховатости поверхности, упрочнения поверхностных слоев детали и создания желательного распределения остаточных напряжений, при котором служебные свойства детали (например, сопротивление усталостному разрушению) улучшаются.

О. м. д. осуществляется воздействием на заготовку внешних сил. Источником деформирующей силы может быть мускульная энергия человека (при ручной ковке, выколотке) или энергия, создаваемая в специальных машинах - прокатных и волочильных станах, Прессах, Молотах и т.п. Деформирующие силы могут создаваться также действием ударной волны на заготовку, например при взрывной штамповке, или мощными магнитными полями. например при электромагнитной штамповке. Деформирующие силы передаются на заготовку инструментом, который обычно является твёрдым, испытывающим малые упругие деформации при пластической деформации заготовки; в некоторых случаях используются эластичные среды (например, при штамповке - резина, полиуретан) или жидкости (например, при гидростатическом прессовании).

Различают горячую и холодную О. м. д. Горячая О. м. д. характеризуется явлениями Возврата и рекристаллизации (См. Рекристаллизация), отсутствием упрочнения (Наклёпа); механического и физико-химического свойства металла изменяются сравнительно мало. Пластическая деформация не создаёт полосчатости (неравномерности) микроструктуры, но приводит к образованию полосчатости макроструктуры у литых заготовок (слитков) или к изменению направления волокон макроструктуры (прядей неметаллических включений) при О. м. д. заготовок, полученных прокаткой, прессованием и волочением. Полосчатость макроструктуры создаёт анизотропию (См. Анизотропия) механических свойств, при которой свойства материала вдоль волокон обычно лучше его свойств в поперечном направлении. При холодной О. м. д. процесс пластической деформации сопровождается упрочнением, которое изменяет механические и физико-химические характеристики металла, создаёт полосчатость микроструктуры и также изменяет направление волокон макроструктуры. При холодной О. м. д. возникает Текстура, создающая анизотропию не только механических, но и физико-химических свойств металла. Используя влияние О. м. д. на свойства металла, можно изготавливать детали с наилучшими свойствами при минимальной массе.

При О. м. д. изменение схемы напряжённого состояния в деформируемой заготовке позволяет влиять на изменение её формы. В условиях неравномерного всестороннего сжатия пластичность металла увеличивается тем больше, чем больше сжимающие напряжения. Рациональный выбор операций О. м. д. и условий деформирования (гидростатическое прессование, выдавливание с противодавлением, прокатка на планетарных станах и т.п.) не только позволяет увеличить допустимое изменение формы, но и применять О. м. д. для изготовления деталей из высокопрочных, труднодеформируемых сплавов.

Научной основой проектирования и управления технологическими процессами О. м. д. является теория О. м. д. - научная дисциплина, синтезирующая отдельные разделы физики металлов, и Пластичности теория. Основные задачи теории О. м. д.: разработка методов определения усилий и работы, затрачиваемой на деформацию, расчёт размеров и формы заготовки, характера изменения её формы, методов определения допустимого (без разрушения или появления др. дефектов) изменения формы заготовки, оценки изменения механических и физико-химических свойств металла в процессе его деформации и отыскание оптимальных условий деформации.

Лит.: Целиков А. И., Смирнов В. В., Прокатные станы, М., 1958; Охрименко Я. М., Технология кузнечно-штамповочного производства, М., 1966; Малов А. Н., Технология холодной штамповки, 4 изд., М., 1969; Сторожев М. В., Попов Е. А., Теория обработки металлов давлением, 3 изд., М., 1971.

Е. А. Попов.

Обработка металлов давлением         
  • Схема волочения
  • Схема прокатки
  • Схема прессования
Обрабо́тка мета́ллов давле́нием (ОМД) — технологический процесс получения заготовок или деталей в результате деформации металла при помощи силового воздействия инструмента. При этом за счёт относительного смещения отдельных частей обрабатываемого металла изменяется только форма заготовки без нарушения сплошности и общего объёма. Также ОМД может применяться в качестве отделочной операции для обработки поверхности металла.
Обработка изображений         
Обработка изображений — любая форма обработки информации, для которой входные данные представлены изображением, например, фотографиями или видеокадрами. Обработка изображений может осуществляться как для получения изображения на выходе (например, подготовка к полиграфическому тиражированию, к телетрансляции и т. д.), так и для получения другой информации (например, распознание текста, подсчёт числа и типа клеток в поле микроскопа и т. д.). Кроме статичных двухмерных изображений, обрабатывать требуется также изображения, изменяющиеся со временем, н�
ТЕРМИЧЕСКАЯ ОБРАБОТКА         
совокупность операций теплового воздействия на материалы (главным образом металлы и сплавы) с целью изменения их структуры и свойств в нужном направлении. Основные виды термической обработки: закалка, отпуск, отжиг, нормализация, старение (искусственное), патентирование. Тепловое воздействие может сочетаться с химическим (химико-термическая обработка), деформационным (термомеханическая обработка), магнитным (термомагнитная обработка). Разновидности термической обработки - обработка стали холодом, электротермическая обработка.
Термическая обработка         

металлов, процесс обработки изделий из металлов и сплавов путём теплового воздействия с целью изменения их структуры и свойств в заданном направлении. Это воздействие может сочетаться также с химическим, деформационным, магнитным и др.

Историческая справка. Человек использует Т. о. металлов с древнейших времён. Ещё в эпоху Энеолита, применяя холодную ковку самородных золота и меди, первобытный человек столкнулся с явлением Наклёпа, которое затрудняло изготовление изделий с тонкими лезвиями и острыми наконечниками, и для восстановления пластичности кузнец должен был нагревать холоднокованую медь в очаге. Наиболее ранние свидетельства о применении смягчающего Отжига наклёпанного металла относятся к концу 5-го тысячелетия до н. э. Такой отжиг по времени появления был первой операцией Т. о. металлов. При изготовлении оружия и орудий труда из железа, полученного с использованием сыродутного процесса (См. Сыродутный процесс), кузнец нагревал железную заготовку для горячей ковки в древесноугольном горне. При этом железо науглероживалось, то есть происходила Цементация - одна из разновидностей химико-термической обработки (См. Химико-термическая обработка). Охлаждая кованое изделие из науглероженного железа в воде, кузнец обнаружил резкое повышение его твёрдости и улучшение др. свойств. Закалка в воде науглероженного железа применялась с конца 2 - начала 1-го тысячелетия до н. э. В "Одиссее" Гомера (8-7 вв. до н. э.) есть такие строки: "Как погружает кузнец раскалённый топор иль секиру в воду холодную, и зашипит с клокотаньем железо - крепче железо бывает, в огне и воде закаляясь". В 5 в. до н. э. этруски закаливали в воде зеркала из высокооловянной бронзы (скорее всего для улучшения блеска при полировке). Цементацию железа в древесном угле или органическом веществе, закалку и Отпуск стали широко применяли в средние века в производстве ножей, мечей, напильников и др. инструментов. Не зная сущности внутренних превращений в металле, средневековые мастера часто приписывали получение высоких свойств при Т. о. металлов проявлению сверхъестественных сил. До середины 19 в. знания человека о Т. о. металлов представляли собой совокупность рецептов, выработанных на основе многовекового опыта. Потребности развития техники, и в первую очередь развития сталепушечного производства. обусловили превращение Т. о. металлов из искусства в науку. В середине 19 в., когда армия стремилась заменить бронзовые и чугунные пушки более мощными стальными, чрезвычайно острой была проблема изготовления орудийных стволов высокой и гарантированной прочности. Несмотря на то что металлурги знали рецепты выплавки и литья стали, орудийные стволы очень часто разрывались без видимых причин. Д. К. Чернов на Обуховском сталелитейном заводе в Петербурге, изучая под микроскопом протравленные шлифы, приготовленные из дул орудий, и наблюдая под лупой строение изломов в месте разрыва, сделал вывод, что сталь тем прочнее, чем мельче её структура. В 1868 Чернов открыл внутренние структурные превращения в охлаждающейся стали, происходящие при определённых температурах. которые он назвал критическими точками а и b. Если сталь нагревать до температур ниже точки а, то её невозможно закалить, а для получения мелкозернистой структуры сталь следует нагревать до температур выше точки b. Открытие Черновым критических точек структурных превращений в стали позволило научно обоснованно выбирать режим Т. о. для получения необходимых свойств стальных изделий.

В 1906 А. Вильм (Германия) на изобретённом им Дуралюмине открыл старение после закалки (см. Старение металлов) - важнейший способ упрочения сплавов на разной основе (алюминиевых, медных, никелевых, железных и др.). В 30-е гг. 20 в. появилась Термомеханическая обработка стареющих медных сплавов, а в 50-е - термомеханическая обработка сталей, позволившая значительно повысить прочность изделий. К комбинированным видам Т. о. относится термомагнитная обработка, позволяющая в результате охлаждения изделий в магнитном поле улучшать их некоторые магнитные свойства (см. Магнитно-мягкие материалы, Магнитно-твёрдые материалы).

Итогом многочисленных исследований изменений структуры и свойств металлов и сплавов при тепловом воздействии явилась стройная теория Т. о. металлов.

Классификация видов Т. о. основывается на том, какого типа структурные изменения в металле происходят при тепловом воздействии. Т. о. металлов подразделяется на собственно термическую, заключающуюся только в тепловом воздействии на металл, химико-термическую, сочетающую тепловое и химическое воздействия, и термомеханическую, сочетающую тепловое воздействие и пластическую деформацию. Собственно термическая обработка включает следующие виды: отжиг 1-го рода, отжиг 2-го рода, закалку без полиморфного превращения и с полиморфным превращением, старение и отпуск.

Отжиг 1-го рода (гомогенизационный, рекристаллизационный и для уменьшения остаточных напряжений) частично или полностью устраняет отклонения от равновесного состояния структуры, возникшие при литье, обработке давлением, сварке и др. технологических процессах. Процессы, устраняющие отклонения от равновесного состояния, идут самопроизвольно, и нагрев при отжиге 1-го рода проводят лишь для их ускорения. Основные параметры такого отжига - температура нагрева и время выдержки. В зависимости от того, какие отклонения от равновесного состояния устраняются, различают разновидности отжига 1-го рода. Гомогенизационный отжиг (см. Гомогенизация) предназначен для устранения последствий дендритной ликвации (См. Ликвация), в результате которой после кристаллизации внутри кристаллитов твёрдого раствора химический состав оказывается неоднородным и, кроме того, может появляться неравновесная фаза, например химическое соединение, охрупчивающее сплав. При гомогенизационном отжиге Диффузия приводит к растворению неравновесных избыточных фаз, в результате чего сплав становится более гомогенным (однородным). После такого отжига повышаются пластичность и стойкость против коррозии. Рекристаллизационный отжиг устраняет отклонения в структуре от равновесного состояния, возникающие при пластической деформации. При обработке давлением, особенно холодной, металл наклёпывается - его прочность возрастает, а пластичность снижается из-за повышения плотности дислокаций (См. Дислокации) в кристаллитах. При нагреве наклёпанного металла выше некоторой температуры развивается первичная и затем собирательная Рекристаллизация, при которой плотность дислокаций резко снижается. В результате металл разупрочняется и становится пластичнее. Такой отжиг используют для улучшения обрабатываемости давлением и придания металлу необходимого сочетания твёрдости, прочности и пластичности. Как правило, при рекристаллизационном отжиге стремятся получить бестекстурный материал, в котором отсутствует Анизотропия свойств. В производстве листов из трансформаторной стали рекристаллизационный отжиг применяют для получения желательной текстуры металла (См. Текстура металла), возникающей при рекристаллизации. Отжиг, уменьшающий напряжения, применяют к изделиям, в которых при обработке давлением, литье, сварке, термообработке и др. технологических процессах возникли недопустимо большие остаточные напряжения, взаимно уравновешивающиеся внутри тела без участия внешних нагрузок. Остаточные напряжения могут вызвать искажение формы и размеров изделия во время его обработки, эксплуатации или хранения на складе. При нагревании изделия предел текучести снижается и, когда он становится меньше остаточных напряжений, происходит быстрая их разрядка путём пластического течения в разных слоях металла.

Отжиг 2-го рода применим только к тем металлам и сплавам, в которых при изменении температуры протекают фазовые превращения. При отжиге 2-го рода происходят качественные или только количественные изменения фазового состава (типа и объёмного содержания фаз) при нагреве и обратные изменения при охлаждении. Основные параметры такого отжига - температура нагрева, время выдержки при этой температуре и скорость охлаждения. температуру и время отжига выбирают так, чтобы обеспечить необходимые фазовые изменения, например полиморфное превращение (см. Полиморфизм) или растворение избыточной фазы. При этом обычно следят за тем, чтобы не выросло крупное зерно фазы, стабильной при температуре отжига. Скорость охлаждения должна быть достаточно мала, чтобы при понижении температуры успели пройти обратные фазовые превращения, в основе которых лежит диффузия. При отжиге 2-го рода изделия охлаждают вместе с печью или на воздухе. В последнем случае процесс называется нормализацией (См. Нормализация). Отжиг 2-го рода применяют чаще всего к стали для общего измельчения структуры, смягчения и улучшения обрабатываемости резанием.

Закалка без полиморфного превращения применима к любым сплавам, в которых при нагревании избыточная фаза полностью или частично растворяется в основной фазе. Важнейшие параметры процесса - температура нагрева, время выдержки и скорость охлаждения. Скорость охлаждения должна быть настолько большой, чтобы избыточная фаза не успела выделиться (процесс выделения фазы обеспечивается диффузионным перераспределением компонентов в твёрдом растворе). Это условие выполняется, если дуралюмин и медные сплавы закаливают в воде; магниевые же сплавы и некоторые аустенитные стали можно закаливать с охлаждением на воздухе. В результате закалки образуется пересыщенный твёрдый раствор. Закалка без полиморфного превращения может как упрочнять, так и разупрочнять сплав (в зависимости от фазового состава и особенностей структуры в исходном и закалённом состояниях). Алюминиевые сплавы с магнием (см. Магналии) закаливают для повышения прочности; у бериллиевой бронзы же после закалки прочность оказывается ниже, а пластичность выше, чем после отжига, и закалку этой бронзы можно использовать для повышения пластичности перед холодной деформацией. Основное назначение закалки без полиморфного превращения - подготовка сплава к старению (см. ниже).

Закалка с полиморфным превращением применима к любым металлам и сплавам, в которых при охлаждении перестраивается Кристаллическая решётка. Основные параметры процесса - температура нагрева, время выдержки и скорость охлаждения. Нагрев производят до температуры выше критической точки, чтобы образовалась высокотемпературная фаза. Охлаждение должно идти с такой скоростью, чтобы не происходило "нормального" диффузионного превращения и перестройка решётки протекала по механизму бездиффузионного мартенситного превращения (См. Мартенситное превращение). При закалке с полиморфным превращением образуется Мартенсит, и поэтому такую термообработку называют закалкой на мартенсит. Углеродистые стали закаливают на мартенсит в воде, а многие легированные, в которых диффузионные процессы протекают замедленно, можно закаливать на мартенсит с охлаждением в масле и даже на воздухе. Основная цель закалки на мартенсит - повышение твёрдости и прочности, а также подготовка к отпуску. Сильное упрочнение сталей при закалке на мартенсит обусловлено образованием пересыщенного углеродом раствора внедрения на базе α-железа, появлением большего числа двойниковых прослоек и повышением плотности дислокаций при мартенситном превращении, закреплением дислокаций атомами углерода и дисперсными частицами карбида, которые могут выделяться на дислокациях в местах сегрегации углерода. Углеродистые стали при закалке на мартенсит резко охрупчиваются. Основная причина этого - малая подвижность дислокаций в мартенсите. Безуглеродистые железные сплавы после закалки на мартенсит остаются пластичными.

Старение применимо к сплавам, которые были подвергнуты закалке без полиморфного превращения. Пересыщенный твёрдый раствор в таких сплавах термодинамически неустойчив и склонен к самопроизвольному распаду. Старение заключается в образовании путём диффузии внутри зерен твердого раствора участков, обогащенных растворённым элементом (зон Гинье - Престона) и (или) дисперсных частиц избыточных фаз, чаще всего химических соединений. Эти зоны и дисперсные частицы выделившихся фаз тормозят скольжение дислокаций, чем и обусловлено упрочнение при старении. Стареющие сплавы называют поэтому дисперсионно-твердеющими. Основные параметры старения - температура и время выдержки. С повышением температуры ускоряются диффузионные процессы распада пересыщенного твёрдого раствора, и сплав быстрее упрочняется. Начиная с определённой выдержки, при достаточно высокой температуре происходит перестаривание - снижение прочности сплава. Причиной перестаривания является коагуляция дисперсных выделений из раствора, которая заключается в растворении более мелких и росте более крупных частиц выделившейся фазы. В результате коагуляции расстояние между этими частицами возрастает и торможение дислокаций в зёрнах твёрдого раствора уменьшается. Одни сплавы, например дуралюмины, после закалки сильно упрочняются уже во время выдержки при комнатной температуре (естественное старение). Большинство сплавов после закалки нагревают, чтобы ускорить процессы распада пересыщенного твёрдого раствора (искусств. старение). Иногда проводят ступенчатое старение с выдержкой вначале при одной, а затем при другой температуре. Старение применяют главным образом для повышения прочности и твёрдости конструкционных материалов (алюминиевых, магниевых, медных, никелевых сплавов и некоторых легированных сталей), а также для повышения коэрцитивной силы магнитно-твёрдых материалов. Время выдержки для достижения заданных свойств в зависимости от состава сплава и температуры старения колеблется от десятков мин до нескольких сут.

Отпуску подвергают сплавы, главным образом стали, закалённые на мартенсит. Основные параметры процесса - температура нагрева и время выдержки, а в некоторых случаях и скорость охлаждения (для предотвращения отпускной хрупкости). В сталях мартенсит является пересыщенным раствором, и сущность структурных изменений при отпуске та же, что и при старении, - распад термодинамически неустойчивого пересыщенного раствора. Отличие отпуска от старения связано прежде всего с особенностями субструктуры мартенсита, а также с поведением углерода в мартенсите закалённой стали. Для мартенсита характерно большое число дефектов кристаллического строения (дислокаций и др.). Атомы углерода быстро диффундируют в решётке мартенсита и образуют на дислокациях сегрегации, а возможно и дисперсные частицы карбида сразу после закалки или даже в период закалочного охлаждения. В результате закалённая сталь оказывается в состоянии максимального дисперсного твердения или в близком к нему состоянии. Поэтому при выделении из мартенсита дисперсных частиц карбида во время отпуска прочность и твёрдость стали или вообще не повышаются, или достигается лишь незначительное упрочнение. Уменьшение же концентрации углерода в мартенсите при выделении из него карбида является причиной разупрочнения мартенсита. В итоге отпуск сталей, как правило, приводит к снижению твёрдости и прочности с одновременным ростом пластичности и ударной вязкости. Отпуск безуглеродистых железных сплавов, закалённых на мартенсит, может приводить к сильному дисперсионному твердению из-за выделения из пересыщенного раствора дисперсных частиц интерметаллических соединений. Причина упрочнения при этом та же, что и при старении. Термины "отпуск" и "старение" часто используют как синонимы.

Т. о., вызывая разнообразные по природе структурные изменения, позволяет управлять строением металлов и сплавов и получать изделия с требуемым комплексом механических, физических и химических свойств. Благодаря этому, а также простоте и дешевизне оборудования Т. о. является самым распространённым в промышленности способом изменения свойств металлических материалов.

На металлургических заводах применяют гомогенизационный отжиг слитков для повышения их пластичности перед обработкой давлением, рекристаллизационный отжиг листов, лент, труб и проволоки для снятия наклёпа между операциями холодной обработки давлением и после неё, закалку, отпуск, старение и термомеханическую обработку для упрочнения проката и прессованных изделий. На машиностроительных заводах отжигают поковки и др. заготовки для уменьшения твёрдости и улучшения обрабатываемости резанием, применяют закалку, отпуск, старение и химико-термическую обработку разнообразных деталей машин, а также инструмента для повышения их прочности, твёрдости, ударной вязкости, сопротивления усталости и износу и отжигают изделия для уменьшения остаточных напряжений. В приборостроении, электротехнической и радиотехнической промышленности с помощью отжига, закалки, отпуска и старения изменяют механические, электрические, магнитные и др. физические свойства металлов и сплавов.

О величине изменения механических свойств при Т. о. металлов дают представление следующие примеры. Рекристаллизационный отжиг холоднокатаной меди снижает предел прочности с 400 до 220 Мн/м2 (с 40 до 22 кгс/мм2). одновременно повышая относительное удлинение с 3 до 50\%. Отожжённая сталь У8 имеет твёрдость 180 НВ; закалка повышает твёрдость этой стали до 650 НВ. Сталь 38 ХМЮА после закалки имеет твёрдость 470 HV, а после азотирования твёрдость поверхностного слоя достигает 1200 HV. Предел прочности дуралюмина Д16 после отжига, закалки и естественного старения равен соответственно 200, 300 и 450 Мн/м2 (20, 30 и 45 кгс/мм2). У бериллиевой бронзы Бр. Б2 предел упругости σ0,002 после закалки равен 120 Мн/м2 (12 кгс/мм2), а после старения 680 Мн/м2 (68 кгс/мм2).

Лит.: Бочвар А. А., Основы термической обработки сплавов, 5 изд., М.- Л., 1940; Гуляев А. П., Термическая обработка стали, 2 изд., М., 1960; Металловедение и термическая обоаботка стали. Справочник, под ред. М. Л. Бернштейна и А. Г. Рахштадта. 2 изд., т. 1-2, М., 1961-62; Новиков И. И., Теория термической обработки металлов, М., 1974.

И. И. Новиков.

Википедия

Металлообработка

Металлообработка — технологический процесс обработки резанием или поверхностным пластическим деформированием (так, после точения может осуществляться выглаживание) металлов и их сплавов.

Последовательными методами обработки металлов являются:

  1. Литьё
  2. Обработка металлов давлением
  3. Механическая обработка
  4. Сварка металлов

При металлообработке изменяется форма и размеры металла, деталям придается желаемая форма при помощи одного или нескольких методов обработки металла. Надёжность любого производства, любой металлической конструкции зависит от качества выполнения металлообработки.

Металлообрабатывающий завод — общее название для заводов, изготавливающих продукцию с применением перечисленных видов обработки металлов.

Что такое МЕТАЛЛОВ ТЕРМИЧЕСКАЯ ОБРАБОТКА - определение