Магнитный усилитель - определение. Что такое Магнитный усилитель
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Магнитный усилитель - определение

Трансдуктор
  • М62]]
  • регулирования напряжения]] от [[самолёт]]а, 7 — магнитный усилитель
  • Упрощённая схема включения магнитного усилителя
  • МУ с внешней ОС и его нагрузочная характеристика
Найдено результатов: 168
МАГНИТНЫЙ УСИЛИТЕЛЬ         
устройство для усиления электрических колебаний НЧ; содержит катушку с магнитопроводом из ферро- или ферримагнетика. Работа магнитного усилителя основана на изменении индуктивности катушки под действием усиливаемого напряжения. Используется в измерительных приборах, устройствах автоматики и т. д.
Магнитный усилитель         

усилитель электрических сигналов, основанный на использовании присущей ферромагнитным материалам нелинейной зависимости магнитной индукции В от напряжённости магнитного поля Н. Управляемыми элементами в М. у. являются индуктивности катушки (См. Индуктивности катушка) с ферромагнитными сердечниками, в которых действуют 2 переменных магнитных поля; одно изменяется с частотой источника питания, другое - с частотой усиливаемого сигнала. Простейший М. у. состоит из 2 замкнутых магнитопроводов, обмотки которых W1 включены последовательно и питаются от источника переменного напряжения Магнитный усилитель U (рис.). Вторичные обмотки W2 включаются последовательно и навстречу друг другу, поэтому замыкание обмоток W2 на небольшое сопротивление не вызывает какого-либо изменения силы тока i1 в первичных обмотках. Если по обмоткам W2 пропустить постоянный ток, то вследствие нелинейного характера кривой намагничивания сердечников динамическая магнитная проницаемость уменьшается и соответственно уменьшается индуктивность L1 первичных обмоток, при этом ток в обмотках возрастает. Устройство, собранное по схеме на рисунке (без сопротивления нагрузки RH), называется управляемым дросселем, который становится усилителем, если последовательно с его обмотками W1 включить RH, а вместо постоянного тока в обмотку W2 подать усиливаемый сигнал постоянного или медленно (по сравнению со скоростью изменения питающего напряжения = U) изменяющегося тока i2.

М. у. принципиально отличается от лампового и транзисторного усилителей тем, что усиливаемый сигнал изменяет не внутреннего сопротивление лампы (транзистора), а индуктивность L1, включенную последовательно с нагрузкой RH, в результате чего изменяется протекающий через нагрузку ток. М. у. по существу является модулятором, в котором ток в нагрузке более высокой частоты модулируется по амплитуде усиливаемым сигналом (низкой частоты). Для получения на выходе М. у. сигнала той же формы, что и усиливаемый сигнал, устройство дополняют выпрямителем в цепи нагрузки, выполняющим роль Детектора.

Коэффициент усиления по току Ki и по мощности Кр для простейших М. у. равны:

где Ry - активное сопротивление обмоток W2, Δi1ср - приращение тока нагрузки, соответствующее приращению тока сигнала Δi2, n1 и n2 - число витков в первичной и вторичной обмотках. По сравнению с ламповыми и полупроводниковыми усилителями М. у. имеют относительно высокую инерционность, которая объясняется главным образом отставанием во времени изменения тока i2 в управляющей обмотке от изменения напряжения, подаваемого на вход М. у. Поэтому их применяют преимущественно для усиления сигналов постоянного или медленно изменяющегося тока. Инерционность М. у. можно снизить (повысить быстродействие) введением гибкой обратной связи (См. Обратная связь), увеличением числа каскадов усиления, а также включением дифференцирующего контура на входе М. у., шунтированнем нагрузки ёмкостью и др. Для расширения частотного диапазона усиливаемых колебаний в сторону более высоких частот целесообразно применять М. у. совместно с ламповыми, полупроводниковыми, электромашинными и другими типами усилителей.

Существуют сотни модификаций схем и конструкций М. у., отличающихся видом нагрузочной характеристики, способом осуществления обратной связи, числом и формой сердечников, видом усиливаемых сигналов, системой смещения, режимом работы. Выбор типа М. у. зависит от требуемых коэффициентов усиления, частоты усиливаемых колебаний, области использования. М. у. имеют самое разнообразное применение - от точных измерит, приборов до устройств автоматического управления мощными производств. агрегатами (прокатными станами, экскаваторами и т.п.). Широкое применение М. у. обусловлено преимуществами: большим сроком службы, высокой надёжностью, простотой обслуживания, значительным коэффициентом усиления, низким порогом чувствительности для сигналов постоянного тока (10-19-10-17 вт), широким диапазоном усиливаемых мощностей - от 10-13-10-6 вт до нескольких десятков и даже сотен квт, постоянной готовностью к работе, возможностью суммировать на входе нескольких управляющих сигналов, значительной перегрузочной способностью, пожаро- и взрывобезопасностью, стабильностью характеристик в процессе эксплуатации.

Лит.: Розенблат М. А., Магнитные усилители, 3 изд., М., 1960; его же, Магнитные элементы автоматики и вычислительной техники, М., 1966.

Схема простейшего магнитного усилителя: Магнитный усилитель U - переменное напряжение; Rн - сопротивление нагрузки; W1 - первичные обмотки; W2 - вторичные обмотки; МС - магнитные сердечники; = U - постоянное напряжение; i1 - ток в первичной обмотке; i2 - ток во вторичной обмотке (усиливаемый сигнал).

Магнитный усилитель         
Магнитный усилитель (амплистат — от — усилитель и static — статический, без движущихся частей, трансдуктор — от ) — это электромагнитное устройство, работа которого основана на использовании нелинейных магнитных свойств ферромагнитных материалов и предназначенное для усиления или преобразования электрических сигналов. Применяется в системах автоматического регулирования, управления и контроля.
Усилитель низкой частоты         
  • Ламповый усилитель звуковой частоты для стереонаушников
  • Углы отсечки полуволны сигнала в различных режимах
  • ИМС для применения в усилителях мощности
  • ШИМ]] прямоугольное колебание, далее усиливаемое силовыми ключами и подаваемое на громкоговоритель через LC-фильтр нижних частот. Частота пилообразного сигнала выбирается много больше самой верхней частоты в спектре звукового сигнала.
  • Предварительный усилитель Technics
  • Трансформаторное согласование с нагрузкой
ЭЛЕМЕНТ СИСТЕМЫ УПРАВЛЕНИЯ ИЛИ ОБРАБОТКИ СИГНАЛОВ, ПРЕДНАЗНАЧЕННЫЙ ДЛЯ УВЕЛИЧЕНИЯ КАКОЙ-ЛИБО ХАРАКТЕРИСТИКИ ВХОДНОГО СИГНАЛА
Усилитель ЗЧ; УЗЧ; УНЧ; УМЗЧ; Усилитель звуковой частоты; Усилитель звуковых частот; Усилитель мощности; Усилитель мощности низкой частоты
Усили́тель звуково́й частоты́ (УЗЧ)ГОСТ 24388-88 Усилители сигналов звуковой частоты бытовые. Общие технические условия.
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ         
  • 741]] в корпусе [[TO-5]]
  • Ламповый операционный усилитель K2-W
  • 393x393px
  • Инвертирующий усилитель
  • Неинвертирующий усилитель
  • Искажение входного П-образного сигнала при ограниченной скорости нарастания выходного сигнала ОУ.
  • радиатора]]
(в вычислительной технике) , см. Решающий усилитель.
Операционный усилитель         
  • 741]] в корпусе [[TO-5]]
  • Ламповый операционный усилитель K2-W
  • 393x393px
  • Инвертирующий усилитель
  • Неинвертирующий усилитель
  • Искажение входного П-образного сигнала при ограниченной скорости нарастания выходного сигнала ОУ.
  • радиатора]]

в аналоговой вычислительной технике, Решающий усилитель без цепей обратной связи.

Операционный усилитель         
  • 741]] в корпусе [[TO-5]]
  • Ламповый операционный усилитель K2-W
  • 393x393px
  • Инвертирующий усилитель
  • Неинвертирующий усилитель
  • Искажение входного П-образного сигнала при ограниченной скорости нарастания выходного сигнала ОУ.
  • радиатора]]
Операционный усилитель (ОУ; , OpAmp) — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент усиления/передачи полученной схемы.
Магнитный момент         
ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Магнитный дипольный момент

основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Из опыта и классической теории электромагнитного поля следует, что магнитные действия замкнутого тока (контура с током) определены, если известно произведение (М) силы тока i на площадь контура σ (М = i σ/c в СГС системе единиц (См. СГС система единиц), с - скорость света). Вектор М и есть, по определению, М. м. Его можно записать и в иной форме: М = m l, где m - эквивалентный Магнитный заряд контура, а l - расстояние между "зарядами" противоположных знаков (+ и -).

М. м. обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. М. м. элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента - Спина. М. м. ядер складываются из собственных (спиновых) М. м. образующих эти ядра протонов и нейтронов, а также М. м., связанных с их орбитальным движением внутри ядра. М. м. электронных оболочек атомов и молекул складываются из спиновых и орбитальных М. м. электронов. Спиновый магнитный момент электрона mсп может иметь две равные и противоположно направленные проекции на направление внешнего магнитного поля Н. Абсолютная величина проекции

где μв= (9,274096 ±0,000065)·10-21эрг/гс - Бора магнетон, , где h - Планка постоянная, е и me - заряд и масса электрона, с - скорость света; SH - проекция спинового механического момента на направление поля H. Абсолютная величина спинового М. м.

где s = 1/2 - спиновое квантовое число (См. Квантовые числа). Отношение спинового М. м. к механическому моменту (спину)

,

так как спин

.

Исследования атомных спектров показали, что mНсп фактически равно не mв, а mв (1 + 0,0116). Это обусловлено действием на электрон так называемых нулевых колебаний электромагнитного поля (см. Квантовая электродинамика, Радиационные поправки).

Орбитальный М. м. электрона mорб связан с механическим орбитальным моментом орб соотношением gopб = |mорб| / |орб| = |e|/2mec, то есть Магнитомеханическое отношение gopб в два раза меньше, чем gcп. Квантовая механика допускает лишь дискретный ряд возможных проекций mорб на направление внешнего поля (так называемое Квантование пространственное): mНорб = mlmв, где ml - магнитное квантовое число, принимающее 2l + 1 значений (0, ±1, ±2,..., ±l, где l - орбитальное квантовое число). В многоэлектронных атомах орбитальный и спиновый М. м. определяются квантовыми числами L и S суммарного орбитального и спинового моментов. Сложение этих моментов проводится по правилам пространственного квантования. В силу неравенства магнитомеханических отношений для спина электрона и его орбитального движения (gcп ¹ gopб) результирующий М. м. оболочки атома не будет параллелен или антипараллелен её результирующему механическому моменту J. Поэтому часто рассматривают слагающую полного М. м. на направление вектора J, равную

где gJ - магнитомеханическое отношение электронной оболочки, J - полное угловое квантовое число.

М. м. протона, спин которого равен

должен был бы по аналогии с электроном равняться

,

где Mp - масса протона, которая в 1836,5 раз больше me, mяд - ядерный магнетон, равный 1/1836,5mв. У нейтрона же М. м. должен был бы отсутствовать, поскольку он лишён заряда. Однако опыт показал, что М. м. протона mp = 2,7927mяд, а нейтрона mn = -1,91315mяд. Это обусловлено наличием мезонных полей около нуклонов, определяющих их специфические ядерные взаимодействия (см. Ядерные силы, Мезоны) и влияющих на их электромагнитные свойства. Суммарные М. м. сложных атомных ядер не являются кратными mяд или mp и mn. Таким образом, М. м. ядра калия равен -1,29 mяд. Причиной этой неаддитивности является влияние ядерных сил, действующих между образующими ядро нуклонами. М. м. атома в целом равен векторной сумме М. м. электронной оболочки и атомного ядра.

Для характеристики магнитного состояния макроскопических тел вычисляется среднее значение результирующего М. м. всех образующих тело микрочастиц. Отнесённый к единице объёма тела М. м. называется намагниченностью. Для макротел, особенно в случае тел с атомным магнитным упорядочением (ферро-, ферри- и антиферромагнетики), вводят понятие средних атомных М. м. как среднего значения М. м., приходящегося на один атом (ион) - носитель М. м. в теле. В веществах с магнитным порядком эти средние атомные М. м. получаются как частное от деления самопроизвольной намагниченности ферромагнитных тел или магнитных подрешёток в ферри- и антиферромагнетиках (при абсолютном нуле температуры) на число атомов - носителей М. м. в единице объёма. Обычно эти средние атомные М. м. отличаются от М. м. изолированных атомов; их значения в магнетонах Бора mв оказываются дробными (например, в переходных d-металлах Fe, Со и Ni соответственно 2,218 mв, 1,715 mв и 0,604 mв) Это различие обусловлено изменением движения d-электронов (носителей М. м.) в кристалле по сравнению с движением в изолированных атомах. В случае редкоземельных металлов (лантанидов), а также неметаллических ферро- или ферримагнитных соединений (например, ферриты) недостроенные d- или f-слои электронной оболочки (основные атомные носители М. м.) соседних ионов в кристалле перекрываются слабо, поэтому заметной коллективизации этих слоев (как в d-металлах) нет и М. м. таких тел изменяются мало по сравнению с изолированными атомами. Непосредственное опытное определение М. м. на атомах в кристалле стало возможным в результате применения методов магнитной нейтронографии, радиоспектроскопии (ЯМР, ЭПР, ФМР и т.п.) и Мёссбауэра эффекта. Для парамагнетиков также можно ввести понятие среднего атомного М. м., который определяется через найденную на опыте постоянную Кюри, входящую в выражение для Кюри закона или Кюри - Вейса закона (см. Парамагнетизм).

Лит.: Тамм И. Е., Основы теории электричества, 8 изд., М., 1966; Ландау Л. Д. и Лифшиц Е. М., Электродинамика сплошных сред, М., 1959; Дорфман Я. Г., Магнитные свойства и строение вещества, М., 1955; Вонсовский С. В., Магнетизм микрочастиц, М., 1973.

С. В. Вонсовский.

Магнитный момент         
ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Магнитный дипольный момент
Магни́тный моме́нт, магни́тный дипо́льный моме́нт — основная физическая величина, характеризующая магнитные свойства вещества, то есть способность создавать и воспринимать магнитное поле. Вычисляется как
МАГНИТНЫЙ МОМЕНТ         
ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Магнитный дипольный момент
векторная величина, характеризующая вещество как источник магнитного поля. Макроскопический магнитный момент создают замкнутые электрические токи и упорядоченно ориентированные магнитные моменты атомных частиц. У микрочастиц различают орбитальные магнитные моменты (напр., у электронов в атомах) и спиновые, связанные со спином частицы. Магнитный момент тела определяется векторной суммой магнитных моментов частиц, из которых тело состоит.

Википедия

Магнитный усилитель

Магнитный усилитель (амплистат — от англ. amplifier — усилитель и static — статический, без движущихся частей, трансдуктор — от англ. transductor) — это электромагнитное устройство, работа которого основана на использовании нелинейных магнитных свойств ферромагнитных материалов и предназначенное для усиления или преобразования электрических сигналов. Применяется в системах автоматического регулирования, управления и контроля.

Что такое МАГНИТНЫЙ УСИЛИТЕЛЬ - определение