Математическая картография - определение. Что такое Математическая картография
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Математическая картография - определение

Найдено результатов: 110
Математическая картография         

картографическая дисциплина, изучающая теорию картографических проекций (См. Картографические проекции), преобразований их, методы изыскания проекций и способы рационального применения их на практике. Иногда в М. к. включают весь комплекс вопросов, относящихся к математическому обоснованию карт (компоновка карт, расчёт рамок и др.), а также способы и средства измерений на картах (см. Картометрия). М. к. тесно связана с математикой, геодезией, со всеми картографическими и другими дисциплинами. На первых этапах (6 век до н. э. - 17 век н. э.) развития М. к. изобретались, исследовались и использовались отдельные картографические проекции, затем (18 век - начало 20 века) изучались также отдельные классы проекций и другие совокупности их. С середины 20 века успешно развивается теория создания новых методов получения различных (зачастую новых) классов или групп проекций, а также теория преобразований их. Методы современной М. к. механизируются и автоматизируются, в частности используются ЭВМ для различных целей.

В М. к. различают прямую и обратную задачи. Прямая задача М. к. - исследование свойств картографических проекций, заданных уравнениями вида

x = f1(φ, λ), y = f2(φ, λ), (1)

где (φ и λ - широта и долгота точки на земном эллипсоиде (См. Земной эллипсоид). Эта задача решается формулами теории искажений. Обратная задача М. к. имеет целью восстановление уравнений (1), или, более обще, нахождение проекций по заданным в них распределениям искажений. В процессе исторического развития М. к. использовались различные методы построения проекций: геометрические, аналитические, графоаналитические и другие, применимые, однако, к получению отдельных проекций или довольно узких совокупностей их. Общий метод изыскания проекций, дающих в то же время решение обратной задачи М. к., следует из системы Эйлера - Урмаева

(2)

где m и n - масштабы по меридианам и параллелям, ε - угол между их изображениями, γ - сближение меридианов. Это - система двух квазилинейных уравнений с частными производными 1-го порядка (например, и т. п.). Она недоопределенная: уравнений - два, функций - четыре. Различные способы доопределения системы (2), выполняемые на основе априорного задания, нужного для практики размещения искажений, позволяют исследовать всевозможные классы проекций. С точки зрения анализа система (2) даёт необходимые и достаточные условия существования проекции с заданными в них распределениями искажений. Систему (2), формулы теории искажений и некоторые их модификации относят к основным уравнениям М. к. При изысканиях новых проекций широко применяют методы численного анализа, теорию конформных и квазиконформных отображений, вариационное исчисление и др.

Система (2) приводит к генетической классификации картографических проекций, являющейся наиболее полной из всех классификаций и объемлющей известные и все мыслимые проекции. В её основе лежит понятие класса проекций как такой совокупности их, которая [после доопределения системы (2) уравнениями проекций в характеристиках] описывается определённой системой двух дифференциальных уравнений с частными производными 1-го порядка; например, класс конформных проекций, класс проекций Эйлера и другие. Системы классов проекций могут быть эллиптических, гиперболических и других типов, в соответствии с чем и проекции, ими описываемые, относятся к указанным типам, что имеет фундаментальное значение при изыскании проекций конкретных классов, проявляющееся в априорном предсказании некоторых свойств новых проекций. Таким образом, М. к. - это своеобразный "арсенал" картографической науки и картографического производства, в специальных "рубриках" которого находятся определённые классы и другие совокупности картографических проекций. Для конкретного производственного задания оттуда может быть взята нужная проекция (или изыскана новая).

Одной из центральных проблем М. к. является задача построения наивыгоднейших картографических проекций, то есть проекций, в которых искажения в каком-либо смысле сведены к минимуму. Она полностью ещё не решена даже для хорошо известных классов проекций, хотя частными случаями этой задачи занимались многие известные учёные (Л. Эйлер, К. Гаусс, П. Л. Чебышев и другие). Проблема ставится двояко: для заданной области изыскивают проекции с минимумом искажений либо из всего мыслимого множества проекций (идеальные проекции), либо из определённого класса (наилучшие проекции класса). В обоих случаях задача с математической точки зрения обращается в проблему приближения функций двух переменных. Но в последней также существуют различные постановки: обращаясь, например, к теории наилучших приближений, говорят о наивыгоднейших проекциях минимаксного типа, а пользуясь теорией квадратических приближений, исследуют наивыгоднейшие проекции вариационного типа. Общая проблема построения наивыгоднейших картографических проекций приводит к ряду новых экстремальных задач на условный минимакс и других. До конца исследован лишь случай наилучших конформных проекций. Согласно теореме Чебышева - Граве, наилучшей конформной проекцией (чебышевской) для данной области является та, крайняя изокола (См. Изоколы) в которой совпадает с контуром изображаемой территории. В чебышевских проекциях искажения площадей наименее уклоняются от нуля. Как следствие, в них наименее уклоняются от нуля также модули логарифмов масштабов длин; отношение наибольшего масштаба к наименьшему минимально; минимальна также наибольшая кривизна изображений геодезических линий; наконец, среднее квадратическое значение логарифмов масштаба длин также минимально. Такое сочетание различных положительных свойств у чебышевских проекций характерно для класса конформных проекций как наиболее простого (но и важного для практики) среди всех других классов. Примером чебышевской проекции является стереографическая проекция, которая при изображении на плоскости сферического сегмента и при специальном выборе произвольной постоянной удовлетворяет условиям теоремы. Методика построения чебышевских проекций детально разработана и для произвольных территорий. Теорема Чебышева - Граве справедлива для ряда некоторых других классов проекций, неконформных, но эллиптического типа.

Лит.: Соловьев М. Д., Математическая картография, М., 1969; Мещеряков Г. А., Теоретические основы математической картографии, М., 1968; его же, О современных задачах математической картографии, "Труды Новосибирского института инженеров геодезии, аэрофотосъемки и картографии", 1967, т. 20; Каврайский В. В., Современные задачи математической картографии. Тезисы доклада на шестой научной сессии ЛГУ, Л., 1949; Гинзбург Г. А., О задачах математической картографии в СССР в области мелкомасштабных карт, "Геодезия и картография", 1958, № 12; Павлов А. А., Математическая картография, в сборнике: Итоги науки и техники. Картография, т. 5, М., 1972, с. 53-66.

Г. А. Мещеряков.

МАТЕМАТИЧЕСКАЯ КАРТОГРАФИЯ         
изучает теорию картографических проекций и способы применения их на практике.
Математическая картография         
Математическая картография — раздел картографии, изучающий математические способы построения картографических проекций, их преобразований, методы изыскания проекций, способы и технические приёмы применения проекций на практике.
СТАТИСТИКА МАТЕМАТИЧЕСКАЯ         
РАЗДЕЛ МАТЕМАТИКИ, ИЗУЧАЮЩИЙ СТАТИСТИЧЕСКИЕ ДАННЫЕ
Статистика математическая; Матстат
см. Математическая статистика.
Математическая статистика         
РАЗДЕЛ МАТЕМАТИКИ, ИЗУЧАЮЩИЙ СТАТИСТИЧЕСКИЕ ДАННЫЕ
Статистика математическая; Матстат

раздел математики, посвященный математическим методам систематизации, обработки и использования статистических данных для научных и практических выводов. При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками (таковы, например, данные таблиц 1а и 2а).

Таблица 1а. - Распределение диаметра детали в мм, обнаруженное при статистическом исследовании массовой продукции (объяснение обозначений , S, s см. в статье).

--------------------------------------------------------------------------------------------------------------------------------

| Диаметр | Основная | 1-я выборка | 2-я выборка | 3-я выборка |

| | выборка | | | |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,05-13,09 | - | - | 1 | 1 |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,10-13,14 | 2 | - | - | - |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,15-13,19 | 1 | - | 1 | 1 |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,20-13,24 | 8 | - | - | - |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,25-13,29 | 17 | 1 | 2 | 1 |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,30-13,34 | 27 | 1 | 1 | 2 |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,35-13,39 | 30 | 2 | 3 | 1 |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,40-13,44 | 37 | 2 | 1 | 1 |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,45-13,49 | 27 | 1 | - | - |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,50-13,54 | 25 | 2 | 1 | - |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,55-13,59 | 17 | - | - | - |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,60-13,64 | 7 | 1 | - | 2 |

|------------------------------------------------------------------------------------------------------------------------------|

| 13,65-13,69 | 2 | - | - | 1 |

|------------------------------------------------------------------------------------------------------------------------------|

| Всего | 200 | 10 | 10 | 10 |

|------------------------------------------------------------------------------------------------------------------------------|

| | 13,416 | 13,430 | 13,315 | 13,385 |

|------------------------------------------------------------------------------------------------------------------------------|

| S2 | 2,3910 | 0,0990 | 0,1472 | 0,3602 |

|------------------------------------------------------------------------------------------------------------------------------|

| s | 0,110 | 0,105 | 0,128 | 0,200 |

--------------------------------------------------------------------------------------------------------------------------------

Таблица 1б. - Распределение диаметра детали основной выборки (из таблицы 1а) при более крупных интервалах группировки

--------------------------------------------------------------------------

| Диаметр | Число деталей |

|------------------------------------------------------------------------|

| 13,00-13,24 | 11 |

|------------------------------------------------------------------------|

| 13,25-13,49 | 138 |

|------------------------------------------------------------------------|

| 13,50-13,74 | 51 |

|------------------------------------------------------------------------|

| Всего | 200 |

--------------------------------------------------------------------------

Предмет и метод математической статистики. Статистическое описание совокупности объектов занимает промежуточное положение между индивидуальным описанием каждого из объектов совокупности, с одной стороны, и описанием совокупности по её общим свойствам, совсем не требующим её расчленения на отдельные объекты, - с другой. По сравнению с первым способом статистические данные всегда в большей или меньшей степени обезличены и имеют лишь ограниченную ценность в случаях, когда существенны именно индивидуальные данные (например, учитель, знакомясь с классом, получит лишь весьма предварительную ориентировку о положении дела из одной статистики числа выставленных его предшественником отличных, хороших, удовлетворительных и неудовлетворительных оценок). С другой стороны, по сравнению с данными о наблюдаемых извне суммарных свойствах совокупности статистические данные позволяют глубже проникнуть в существо дела. Например, данные гранулометрического анализа породы (то есть данные о распределении образующих породу частиц по размерам) дают ценную дополнительную информацию по сравнению с испытанием нерасчленённых образцов породы, позволяя в некоторой мере объяснить свойства породы, условия её образования и прочее.

Метод исследования, опирающийся на рассмотрение статистических данных о тех или иных совокупностях объектов, называется статистическим. Статистический метод применяется в самых различных областях знания. Однако черты статистического метода в применении к объектам различной природы столь своеобразны, что было бы бессмысленно объединять, например, социально-экономическую статистику (См. Статистика), физическую статистику (см. Статистическая физика), звёздную статистику (См. Звёздная статистика) и тому подобное в одну науку.

Общие черты статистического метода в различных областях знания сводятся к подсчёту числа объектов, входящих в те или иные группы, рассмотрению распределения количеств, признаков, применению выборочного метода (в случаях, когда детальное исследование всех объектов обширной совокупности затруднительно), использованию теории вероятностей при оценке достаточности числа наблюдений для тех или иных выводов и т. п. Эта формальная математическая сторона статистических методов исследования, безразличная к специфической природе изучаемых объектов, и составляет предмет М. с.

Связь математической статистики с теорией вероятностей. Связь М. с. с теорией вероятностей имеет в разных случаях различный характер. Вероятностей теория изучает не любые явления, а явления случайные и именно "вероятностно случайные", то есть такие, для которых имеет смысл говорить о соответствующих им распределениях вероятностей. Тем не менее, теория вероятностей играет определённую роль и при статистическом изучении массовых явлений любой природы, которые могут не относиться к категории вероятностно случайных. Это осуществляется через основанные на теории вероятностей теорию выборочного метода (См. Выборочный метод) и теорию ошибок измерений (см. Ошибок теория). В этих случаях вероятностным закономерностям подчинены не сами изучаемые явления, а приёмы их исследования.

Более важную роль играет теория вероятностей при статистическом исследовании вероятностных явлений. Здесь в полной мере находят применение такие основанные на теории вероятностей разделы М. с., как теория статистической проверки вероятностных гипотез, теория статистической оценки распределений вероятностей и входящих в них параметров и так далее. Область же применения этих более глубоких статистических методов значительно уже, так как здесь требуется, чтобы сами изучаемые явления были подчинены достаточно определённым вероятностным закономерностям. Например, статистическое изучение режима турбулентных водных потоков или флюктуаций в радиоприёмных устройствах производится на основе теории стационарных случайных процессов (См. Стационарный случайный процесс). Однако применение той же теории к анализу экономических временных рядов может привести к грубым ошибкам ввиду того, что входящее в определение стационарного процесса допущение наличия сохраняющихся в течение длительного времени неизменных распределений вероятностей в этом случае, как правило, совершенно неприемлемо.

Вероятностные закономерности получают статистическое выражение (вероятности осуществляются приближённо в виде частот, а математические ожидания - в виде средних) в силу Больших чисел закона.

Простейшие приёмы статистического описания. Изучаемая совокупность из n объектов может по какому-либо качественному признаку А разбиваться на классы A1, A2, ..., Ar. Соответствующее этому разбиению статистическое распределение задаётся при помощи указания численностей (частот) n1, n2, ..., nr, (где ) отдельных классов. Вместо численностей ni часто указывают соответствующие относительные частоты (частости) hi = ni / n (удовлетворяющие, очевидно, соотношению). Если изучению подлежит некоторый количественный признак, то его распределение в совокупности из n объектов можно задать, перечислив непосредственно наблюдённые значения признака: х1, x2, ..., xn, например, в порядке их возрастания. Однако при больших n такой способ громоздок и в то же время не выявляет отчётливо существенных свойств распределения (подробнее о способах изображения и простейших характеристиках распределения одного количественного признака см. Распределения (См. Распределение)). При сколько-либо больших n на практике обычно совсем не составляют полных таблиц наблюдённых значений xi, а исходят во всей дальнейшей работе из таблиц, содержащих лишь численности классов, получающихся при группировке наблюдённых значений по надлежаще выбранным интервалам.

Например, в первом столбце таблицы 1а даны результаты измерения 200 диаметров деталей, группированные по интервалам длиной 0,05 мм. Основная выборка соответствует нормальному ходу технологического процесса, 1-я, 2-я и 3-я выборки сделаны через некоторые промежутки времени для проверки устойчивости этого нормального хода производства. В таблице 1б результаты измерения деталей основной выборки даны при группировке по интервалам длиной 0,25 мм.

Обычно группировка по 10-20 интервалам, в каждый из которых попадает не более 15-20 \% значений xi, оказывается достаточной для довольно полного выявления всех существенных свойств распределения и надёжного вычисления по групповым численностям основных характеристик распределения (см. о них ниже). Составленная по таким группированным данным Гистограмма наглядно изображает распределение. Гистограмма, составленная на основе группировки с маленькими интервалами, обычно многовершинная и не отражает наглядно существенных свойств распределения.

В качестве примера на рис. 1 дана гистограмма распределения 200 диаметров, соответствующая данным первого столбца таблицы 1а, а на рис. 3 - гистограмма того же распределения (соответствующая таблица не приводится ввиду её громоздкости) при интервале 0,01 мм. С другой стороны, группировка по слишком крупным интервалам может привести к потере ясного представления о характере распределения и к грубым ошибкам при вычислении среднего и других характеристик распределения (см. таблицу 1б и соответствующую гистограмму на рис. 2).

В пределах М. с. вопрос об интервалах группировки может быть рассмотрен только с формальной стороны: полноты математического описания распределения, точности вычисления средних по сгруппированным данным и так далее. О группировке, имеющей целью выделить качественно различные группы в изучаемой совокупности, см. Статистические группировки.

При изучении совместного распределения двух признаков пользуются таблицами с двумя входами. Примером совместного распределения двух качеств, признаков может служить таблица 2а. В общем случае, когда по признаку А материал разбит на классы A1, A2, ..., Ar, а по признаку В - на классы B1, B2, ..., Bs, таблица состоит из численностей nij объектов, принадлежащих одновременно классам Ai и Bj). Суммируя их по формулам

, ,

получают численности самих классов Ai и Bj; очевидно, что

,

где n - численность всей изучаемой совокупности. В зависимости от целей дальнейшего исследования вычисляют те или иные из относительных частот

hij = nij / n, hi. = ni. / n, h.j = n..j / n, hi(j) = nij / n.j, h(i)j = nij / ni..

Например, при изучении влияния вдыхания сыворотки на заболевание гриппом по таблице 2а естественно вычислить относительные частоты, данные в таблице 2б.

Таблица 2а. - Распределение заболевших и не заболевших гриппом среди работников Центрального универмага в Москве, вдыхавших и не вдыхавших противогриппозную сыворотку (1939)

--------------------------------------------------------------------------------------------------------------------------------

| | Не заболевшие | Заболевшие | Всего |

|-------------------------------------------------------------------------------------------------------------------------------|

| Не вдыхавшие | 1675 | 150 | 1825 |

|-------------------------------------------------------------------------------------------------------------------------------|

| Вдыхавшие | 497 | 4 | 501 |

|-------------------------------------------------------------------------------------------------------------------------------|

| Всего | 2172 | 154 | 2326 |

--------------------------------------------------------------------------------------------------------------------------------

Таблица 2б. - Относительные частоты (соответствующие данным таблицы 2а)

--------------------------------------------------------------------------------------------------------------------------------

| | Не заболевшие | Заболевшие | Всего |

|-------------------------------------------------------------------------------------------------------------------------------|

| Не вдыхавшие | 0,918 | 0,082 | 1,000 |

|-------------------------------------------------------------------------------------------------------------------------------|

| Вдыхавшие | 0,992 | 0,008 | 1,000 |

--------------------------------------------------------------------------------------------------------------------------------

Пример таблицы для совместного распределения двух количеств, признаков см. в статье Корреляция. Таблица 1а служит примером смешанного случая: материал группируется по одному качеств, признаку (принадлежность к основной выборке, произведённой для определения среднего уровня производственного процесса, и к трём выборкам, произведённым в различные моменты времени для проверки сохранения этого нормального среднего уровня) и по одному количеств, признаку (диаметр деталей).

Простейшими сводными характеристиками распределения одного количественного признака являются среднее

,

и среднее квадратичное отклонение

,

где

При вычислении χ̅, S2 и D по группированным данным пользуются формулами

,

или

,

где r - число интервалов группировки, ak - их середины (в случае таблицы 1а - 13,07; 13,12; 13,17; 13,22 и т. д.). Если материал сгруппирован по слишком крупным интервалам, то такой подсчёт даёт слишком грубые результаты. Иногда в таких случаях полезно прибегать к специальным поправкам на группировку. Однако эти поправки имеет смысл вводить лишь при условии выполнения определённых вероятностных предположений.

О совместных распределениях двух и большего числа признаков см. Корреляция, Корреляционный анализ, Регрессия, Регрессионный анализ.

Связь статистических распределений с вероятностными. Оценка параметров.

Проверка вероятностных гипотез. Выше были изложены лишь некоторые избранные простейшие приёмы статистического описания, представляющего собой довольно обширную дисциплину с хорошо разработанной системой понятий и техникой вычислений. Приёмы статистического описания интересны, однако не сами по себе, а в качестве средства для получения из статистического материала выводов о закономерностях, которым подчиняются изучаемые явления, и о причинах, приводящих в каждом отд. случае к тем или иным наблюдённым статистическим распределениям.

Например, данные, приведённые в таблице 2а, естественно связать с такой теоретической схемой. Заболевание гриппом каждого отдельного работника универмага следует считать случайным событием, так как общие условия работы и жизни обследованных работников универмага могут определять не сам факт заболевания такого-то и такого-то работника, а лишь некоторую вероятность заболевания. Вероятности заболевания для вдыхавших сыворотку (p1) и для не вдыхавших (p0), судя по статистическим данным, различны: эти данные дают основания предполагать, что p1 существенно меньше p0. Перед М. с. возникает задача: по наблюдённым частотам h1 = 4/501 ≈ 0,008 и h0 = 150/1825 ≈ 0,082 оценить вероятности p1 и p0 и проверить, достаточен ли статистический материал для того, чтобы считать установленным, что p1 < p0 (то есть что вдыхание сыворотки действительно уменьшает вероятность заболевания). Утвердительный ответ на поставленный вопрос в случае данных таблицы 2а достаточно убедителен и без тонких средств М. с. Но в более сомнительных случаях необходимо прибегать к разработанным М. с. специальным критериям.

Данные первого столбца таблицы 1а собраны с целью установления точности изготовления деталей, расчётный диаметр которых равен 13,40 мм, при нормальном ходе производства. Простейшим допущением, которое может быть в этом случае обосновано некоторыми теоретическими соображениями, является предположение, что диаметры отдельных деталей можно рассматривать как случайные величины X, подчинённые нормальному распределению вероятностей

P{X<x} = . (1)

Если это допущение верно, то параметры a и σ2 - среднее и дисперсию вероятностного распределения - можно с достаточной точностью оценить по соответствующим характеристикам статистического распределения (так как число наблюдений n = 200 достаточно велико). В качестве оценки для теоретической дисперсии σ2 предпочитают не статистическую дисперсию D2 = S2/ n, а несмещенную оценку (См. Несмещённая оценка)

s2 = S2/ (n - 1).

Для теоретического среднего квадратичного отклонения не существует общего (пригодного при любом распределении вероятностей) выражения несмещенной оценки. В качестве оценки (вообще говоря, смещенной) для σ чаще всего употребляют s. Точность оценок χ̅ и s для a и σ указывается соответствующими дисперсиями, которые в случае нормального распределения (1) имеют вид

σ2a = σ2/ n Математическая статистика s2/ n,

Математическая статистика 2s4/ n,

Математическая статистика s2/ 2n,

где знак Математическая статистика обозначает приближённое равенство при больших n. Таким образом, уславливаясь прибавлять к оценкам со знаком ± их среднее квадратичное отклонение, имеем при больших n в предположении нормального распределения (1):

, . (2)

Для данных первого столбца таблицы 1а формулы (2) дают

a = 13,416 ± 0,008,

σ = 0,110 ± 0,006.

Объём выборки n = 200 достаточен для законности пользования этими формулами теории больших выборок.

Дальнейшие сведения об оценке параметров теоретических распределений вероятностей см. в статьях Статистические оценки, Доверительные границы. О способах, при помощи которых по данным первого столбца таблицы 1а можно было бы проверить исходные гипотезы нормальности распределения и независимости наблюдений, см. в статьях Распределения, Непараметрические методы, Статистическая проверка гипотез.

При рассмотрении данных следующих столбцов таблицы 1а, каждый из которых составлен на основе 10 измерений, употребление формул теории больших выборок, установленных лишь в качестве предельных формул при n → ∞, может служить только для первой ориентировки. В качестве приближённых оценок параметров a и σ по-прежнему употребляются величины χ̅ и s, но для оценки точности и надёжности таких оценок необходимо применять теорию малых выборок (См. Малые выборки). При сравнении по правилам М. с. выписанных в последних строках таблицы 1а значений χ̅ и s для трёх выборок с нормальными значениями a и σ, оцененными по первому столбцу таблицы, можно сделать следующие выводы: первая выборка не даёт оснований предполагать существенного изменения хода производственного процесса, вторая выборка даёт основание к заключению об уменьшении среднего диаметра а, третья выборка - к заключению об увеличении дисперсии.

Все основанные на теории вероятностей правила статистической оценки параметров и проверки гипотез действуют лишь с определённым значимости уровнем (См. Значимости уровень) ω < 1, то есть могут приводить к ошибочным результатам с вероятностью α = 1 - ω. Например, если в предположении нормального распределения и известной теоретической дисперсии σ2 производить оценку a по χ̅ по правилу

,

то вероятность ошибки будет равна α, связанному с k соотношением (см. таблицу 3);

.

Вопрос о рациональном выборе уровня значимости в данных конкретных условиях (например, при разработке правил статистического контроля массовой продукции) является весьма существенным. При этом желанию применять правила лишь с высоким (близким к единице) уровнем значимости противостоит то обстоятельство, что при ограниченном числе наблюдений такие правила позволяют сделать лишь очень бедные выводы (не дают возможности установить неравенство вероятностей даже при заметном неравенстве частот и т. д.).

Таблица 3. - Зависимость a и w = 1 - a от k.

----------------------------------------------------------------------------------------------------------------------

| k | 1,96 | 2,58 | 3,00 | 3,29 |

|---------------------------------------------------------------------------------------------------------------------|

| a | 0,050 | 0,010 | 0,003 | 0,001 |

|---------------------------------------------------------------------------------------------------------------------|

| w | 0,950 | 0,990 | 0,997 | 0,999 |

----------------------------------------------------------------------------------------------------------------------

Выборочный метод. В предыдущем разделе результаты наблюдений, используемых для оценки распределения вероятностей или его параметров, подразумевались (хотя это и не оговаривалось) независимыми (см. Вероятностей теория и особенно Независимость). Хорошо изученным примером использования зависимых наблюдений может служить оценка статистического распределения или его параметров в "генеральной совокупности" из N объектов по произведённой из неё "выборке", содержащей n < N объектов.

Терминологическое замечание. Часто совокупность n наблюдений, сделанных для оценки распределения вероятностей, также называют выборкой. Этим объясняется, например, происхождение употребленного выше термина "теория малых выборок". Эта терминология связана с тем, что часто распределение вероятностей представляют себе в виде статистического распределения в воображаемой бесконечной "генеральной совокупности" и условно считают, что наблюдаемые n объектов "выбираются" из этой совокупности. Эти представления не имеют отчётливого содержания. В собственном смысле слова выборочный метод всегда предполагает исходную конечную генеральную совокупность.

Примером применения выборочного метода может служить следующий. Пусть в партии из N изделий имеется L дефектных. Из партии отбирается случайным образом n < N изделий (например, n = 100 при N = 10 000). Вероятность того, что число l дефектных изделий в выборке будет равно m, равна

P{l = m} =

Таким образом, l и соответствующая относительная частота h = l / n оказываются случайными величинами, распределение которых зависит от параметра L или, что то же самое, от параметра Н = L / N. Задача оценки относительной частоты Н по выборочной относительной частоте h очень похожа на задачу оценки вероятности р по относительной частоте h при n независимых испытаниях. При больших n с вероятностью, близкой к единице, в задаче об оценке вероятности имеет место приближённое равенство р Математическая статистика h, а в задаче об оценке относительной частоты - приближённое равенство H Математическая статистика h. Однако в задаче об оценке Н формулы сложнее, а отклонения h от Н в среднем несколько меньше, чем отклонения h от р в задаче об оценке вероятности (при том же n). Таким образом, оценка доли Н дефектных изделий в партии по доле h дефектных изделий в выборке при данном объёме выборки n производится всегда (при любом N) несколько точнее, чем оценка вероятности р по относительной частоте h при независимых испытаниях. Когда N/n → ∞, формулы задачи о выборке переходят асимптотически в формулы задачи об оценке вероятности р. См. также Выборочный метод.

Дальнейшие задачи математической статистики. Упоминавшиеся выше способы оценки параметров и проверки гипотез основаны на предположении, что число наблюдений, необходимых для достижения заданной точности выводов, определяют заранее (до проведения испытаний). Однако часто априорное определение числа наблюдений нецелесообразно, так как, не фиксируя число опытов заранее, а определяя его в ходе эксперимента, можно уменьшить его математическое ожидание. Сначала это обстоятельство было подмечено на примере выбора одной из двух гипотез по последовательности независимых испытаний. Соответствующая процедура (впервые предложенная в связи с задачами приёмочного статистического контроля (См. Приёмочный статистический контроль)) состоит в следующем: на каждом шаге по результатам уже проведённых наблюдений решают а) провести ли следующее испытание, или б) прекратить испытания и принять первую гипотезу, или в) прекратить испытания и принять вторую гипотезу. При надлежащем подборе количеств, характеристик подобной процедуры можно добиться (при той же точности выводов) сокращения числа наблюдений в среднем почти вдвое по сравнению с процедурой выборки фиксированного объёма (см. Последовательный анализ). Развитие методов последовательного анализа привело, с одной стороны, к изучению управляемых случайных процессов (См. Управляемый случайный процесс), с другой - к появлению общей теории статистических решений. Эта теория исходит из того, что результаты последовательно проводимых наблюдений служат основой принятия некоторых решений (промежуточных - продолжать испытания или нет, и окончательных - в случае прекращения испытаний). В задачах оценки параметров окончательные решения суть числа (значение оценок), в задачах проверки гипотез - принимаемые гипотезы. Цель теории - указать правила принятия решений, минимизирующих средний риск или убыток (риск зависит и от вероятностных распределений результатов наблюдений, и от принимаемого окончательного решения, и от расходов на проведение испытаний и т. п.).

Вопросы целесообразного распределения усилий при проведении статистического анализа явлений рассматриваются в теории планирования эксперимента (См. Планирование эксперимента), ставшей важной частью современной М. с.

Наряду с развитием и уточнением общих понятий М. с. развиваются и её отдельные разделы, такие, как Дисперсионный анализ, Статистический анализ случайных процессов, Статистический анализ многомерный. Появились новые оценки в регрессионном анализе (см. также Стохастическая аппроксимация). Большую роль в задачах М. с. играет так называемый байесовский подход (см. Статистические решения).

Историческая справка. Первые начала М. с. можно найти уже в сочинениях создателей теории вероятностей - Я. Бернулли (конец 17 - начало 18 веков), П. Лапласа (2-я половина 18 - начало 19 веков) и С. Пуассона (1-я половина 19 века). В России методы М. с. в применении к демографии и страховому делу развивал на основе теории вероятностей В. Я. Буняковский (1846). Решающее значение для всего дальнейшего развития М. с. имели работы русской классической школы теории вероятностей 2-й половины 19 - начала 20 веков (П. Л. Чебышев, А. А. Марков, А. М. Ляпунов, С. Н. Бернштейн). Многие вопросы теории статистических оценок были по существу разработаны на основе теории ошибок и метода наименьших квадратов [К. Гаусс (1-я половина 19 века) и А. А. Марков (конец 19 - начало 20 веков)]. Работы А. Кетле (19 век, Бельгия), Ф. Гальтона (19 век, Великобритания) и К. Пирсона (конец 19 - начало 20 веков, Великобритания) имели большое значение, но по уровню использования достижений теории вероятностей отставали от работ русской школы. К. Пирсоном была широко развёрнута работа по составлению таблиц функций, необходимых для применения методов М. с. В создании теории малых выборок, общей теории статистических оценок и проверки гипотез (освобожденной от предположений о наличии априорных распределений), последовательного анализа весьма значительна роль представителей англо-американской школы [Стьюдент (псевдоним У. Госсета), Р. Фишер, Э. Пирсон - Великобритания, Ю. Нейман, А. Вальд - США], деятельность которых началась в 20-х годах 20 века. В СССР значительные результаты в области М. с. получены В. И. Романовским, Е. Е. Слуцким, которому принадлежат важные работы по статистике связанных стационарных рядов, Н. В. Смирновым, заложившим основы теории непараметрических методов М. с., Ю. В. Линником, обогатившим аналитический аппарат М. с. новыми методами. На основе М. с. особенно интенсивно разрабатываются статистические методы исследования и контроля массового производства, статистические методы в области физики, гидрологии, климатологии, звёздной астрономии, биологии, медицины и другие.

Существует несколько журналов, публикующих работы по М. с., в том числе "Annals of Statistics" (до 1973 "Annals of Mathematical Statistics"), "International Statistical Institute Review", "Biometrika", "Journal of the Royal Statistical Society". Имеются научные ассоциации, поддерживающие исследования по М. с. и её применениям. Важную роль играет Международный статистический институт (ISI) с центром в Амстердаме и созданная при нём Международная ассоциация по статистическим методам в естественых науках (IASPS).

Лит.: Крамер Г., Математические методы статистики, перевод с английского, М., 1948; Ван-дер-Варден Б. Л., Математическая статистика, перевод с немецкого, М., 1960; Смирнов Н. В., Дунин-Барковский И. В., Курс теории вероятностей и математической статистики для технических приложений, 3 изд., М., 1969; Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, М., 1968; Линник Ю. В., Метод наименьших квадратов ..., 2 изд., М., 1962; Хальд А., Математическая статистика с техническими приложениями, перевод с английского, М., 1956; Андерсон Т., Введение в многомерный статистический анализ, перевод с английского, М., 1963; Кендалл М. Дж., Стьюарт А., Теория распределений, перевод с английского, М., 1966.

А. Н. Колмогоров, Ю. В. Прохоров.

Рис. 1. Гистограмма распределения диаметров 200 деталей. Длина интервала группировки 0,05 мм.

Рис. 2. Гистограмма распределения диаметров 200 деталей. Длина интервала группировки 0,25 мм.

Рис. 3. Гистограмма распределения диаметров 200 деталей. Длина интервала группировки 0,01 мм.

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА         
РАЗДЕЛ МАТЕМАТИКИ, ИЗУЧАЮЩИЙ СТАТИСТИЧЕСКИЕ ДАННЫЕ
Статистика математическая; Матстат
наука о математических методах систематизации и использования статистических данных для научных и практических выводов. Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надежность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объем выборки для получения результатов требуемой точности при выборочном обследовании).
Статистика математическая         
РАЗДЕЛ МАТЕМАТИКИ, ИЗУЧАЮЩИЙ СТАТИСТИЧЕСКИЕ ДАННЫЕ
Статистика математическая; Матстат

раздел математики, посвященный математическим методам систематизации, обработки и использования статистических данных для научных и практических выводов. См. Математическая статистика.

Математическая статистика         
РАЗДЕЛ МАТЕМАТИКИ, ИЗУЧАЮЩИЙ СТАТИСТИЧЕСКИЕ ДАННЫЕ
Статистика математическая; Матстат
Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.
Санкт-Петербургская математическая олимпиада         
Са́нкт-Петербу́ргская математи́ческая олимпиа́да — проводится с 1934 года, является старейшей математической олимпиадой среди школьников в России. Возможно, является старейшим в мире очным официальным математическим соревнованием для школьников.
Всероссийская олимпиада школьников по математике         
ЕЖЕГОДНАЯ ПРЕДМЕТНАЯ ОЛИМПИАДА ШКОЛЬНИКОВ В РОССИИ
Всероссийская математическая олимпиада
Всероссийская олимпиада школьников по математике — ежегодное соревнование по математике для школьников.

Википедия

Математическая картография

Математическая картография — раздел картографии, изучающий математические способы построения картографических проекций, их преобразований, методы изыскания проекций, способы и технические приёмы применения проекций на практике.

К математической картографии также иногда относят весь комплекс вопросов, связанных с математическим обоснованием карт (компоновка карт, расчёт рамок и т. п.), а также способы и средства измерений на картах (см. Картометрия).

Тесно связана с математикой, геодезией и другими дисциплинами.