Многозначная логика - определение. Что такое Многозначная логика
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Многозначная логика - определение

Многозначные логики; Логика многозначная

Многозначная логика         

раздел математической логики (См. Математическая логика), изучающий математические модели логики высказываний (См. Логика высказываний). Эти модели отражают две основные черты последней - множественность значений истинности высказываний и возможность построения новых, более сложных высказываний из заданных при помощи логических операций, которые позволяют также по значениям истинности исходных высказываний устанавливать значение истинности сложного высказывания. Примерами многозначных высказываний являются суждения с модальным исходом ("да", "нет", "может быть") и суждения вероятностного характера, а примерами логических операций - логической связки типа "и", "или", "если..., то". В общем случае модели М. л. представляют собой обобщения алгебры логики (См. Алгебра логики). Важно отметить, что в алгебре логики высказывания принимают только два значения истинности ("да", "нет"), в связи с чем она в общем случае не может отразить всего многообразия логических построений, встречающихся на практике. При достаточно широком толковании М. л. в неё иногда включают также логические исчисления (См. Исчисление).

Исторически первыми моделями М. л. явились двузначная логика Дж. Буля (См. Буль) (называемая также алгеброй логики), трёхзначная логика Я. Лукасевича (1920) и m-значная логика Э. Поста (1921). Изучение этих моделей составило важный этап в создании теории М. л. М. л. обладает определённой спецификой, состоящей в рассмотрении задач и подходов, возникающих при исследовании М. л. с позиций математической логики, теоретической кибернетики (См. Кибернетика) и алгебры (См. Алгебра). Так, с позиций теоретической кибернетики, модели М. л. рассматриваются как языки, описывающие функционирование сложных управляющих систем, компоненты которых могут находиться в некотором числе различных состояний; а с точки зрения алгебры, модели М. л. представляют собой алгебраические системы, имеющие наряду с прикладным и чисто теоретический интерес.

Построение моделей М. л. осуществляется по аналогии с построением двузначной логики. Так, индивид, высказывания логики, разбитые на классы с одним и тем же значением истинности, приводят к понятию множества Е - констант модели, которые фактически отождествляют все индивидуальные высказывания, заменяя их соответствующими значениями истинности; переменные высказывания - к переменным величинам x1, x2, ..., которые в качестве значений принимают элементы из множества Е; логической связки - к множеству М элементарных функций (операций), которые, как и их аргументы, принимают значения из Е. Сложные высказывания, построенные из индивидуальных и переменных высказываний, а также логических связок, приводят к множеству <М> формул над М. Значение истинности из Е сложного высказывания является функцией от соответствующих значений истинности высказываний, входящих в данное сложное высказывание. В модели эта функция приписывается формуле, соответствующей данному сложному высказыванию; говорят также, что формула реализуют эту функцию. Множество формул <М> приводит к множеству [М] функций, реализуемых формулами из <М> и называемых суперпозициями над М. Множество [М] называется замыканием множества М. Задание конкретной модели М. л. считается эквивалентным указанию множеств Е, М, <М> и [М]; при этом говорят, что модель порождается множеством М. Эта модель называется формульной моделью, а также m-значной логикой, где m обозначает мощность множества Е.

Своеобразие подхода математической кибернетики к М. л. состоит в рассмотрении моделей М. л. как управляющих систем. Элементарные функции при этом являются элементами, производящими определённые операции, а формулы интерпретируются как схемы, построенные из элементов и также осуществляющие переработку входной информации в выходную. Такого рода управляющие системы, известные в кибернетике как схемы из функциональных элементов, широко используются в теоретических и практических вопросах кибернетики. Вместе с тем существует ряд задач логики и кибернетики, который связан с изучением соответствий между множествами М и [М] и при котором роль множества <М> несколько затушёвывается, сводясь к способу определения второго множества по первому. В этом случае приходят к другой модели М. л., которая представляет собой алгебру, элементами которой являются функции, принимающие в качестве значений, как и их аргументы, элементы из Е. В качестве операций в этих алгебрах обычно используется специальный набор операций, эквивалентный в смысле соответствий М и [М] множеству формул, построенных из функций множества М, т. е. получению сложных функций из заданных путём подстановки одних функций вместо аргументов других.

К числу задач, характерных для формульной модели М. л., относится задача "об описании", т. е. вопрос об указании для заданного множества М2 ⊆ [M1] всех формул из <M1>, реализующих функции из М2. Частным случаем такой задачи является важный вопрос математической логики об указании всех формул, реализующих заданную константу, что, например, для исчисления высказываний эквивалентно построению всех тождественно истинных высказываний. Пограничным вопросом между математической логикой и алгеброй, примыкающим к задаче об описании, является задача о тождественных преобразованиях. В ней при заданном множестве М требуется выделить в некотором смысле простейшее подмножество пар равных (т. е. реализующих одну и ту же функцию) формул из <М>, позволяющее путём подстановки выделенных равных формул одной вместо другой получить из любой формулы все формулы, равные ей. Аналогичное место занимает один из важнейших вопросов для М. л. - т. н. проблема полноты, состоящая в указании всех таких подмножеств M1 заданного замкнутого, т. е. совпадающего со своим замыканием, множества М, для которых выполнено равенство [M1] = М, т. е. имеет место свойство полноты M1 в М. Глобальной задачей для М. л. является описание структуры замкнутых классов данной модели М. л.

Характерный для теории управляющих систем вопрос о сложности этих систем естественно возникает и по отношению к формулам и функциям из М. л. Типичной при таком подходе является следующая задача о сложности реализации. На множестве всех элементарных формул некоторым способом вводится числовая мера (сложность формул), которая затем распространяется на множество всех формул, например, путём суммирования мер всех тех элементарных формул, которые участвуют в построении заданной формулы. Требуется для заданной функции указать ту формулу (простейшую), которая реализует эту функцию и имеет наименьшую сложность, а также выяснить, как эта сложность зависит от некоторых свойств рассматриваемой функции. Исследуются различные обобщения этой задачи. Широкий круг вопросов связан с реализацией функций формулами с наперёд заданными свойствами. Сюда относятся задача о реализации функций алгебры логики дизъюнктивными нормальными формами и связанная с этим задача о минимизации; а также задача о реализации функций формулами в некотором смысле ограниченной глубины (т. е. такими формулами, в которых цепочка подставляемых друг в друга формул имеет ограниченную длину, такое ограничение связано с надёжностью и скоростью вычислений).

Решения всех перечисленных задач существенно зависят от мощности множества Е и множества М, порождающего заданную модель М. л.

К числу наиболее важных примеров М. л. относятся конечнозначные логики (т. е. m-значные логики, для которых m конечно). Среди них наиболее глубоко исследован случай m = 1. Важнейшим результатом здесь является полное описание структуры замкнутых классов и получение для них важной информации по задаче о сложности реализации. Установлено, что при m > 2 у конечнозначных логик возникает ряд особенностей, существенно отличающих их от двузначного случая. Таковы, например, континуальность множества замкнутых классов (при m = 2 их счётное число), особенности решения задачи о сложности реализации и ряд других. Общим результатом для конечнозначных логик является эффективное решение задачи о полноте для замкнутых классов, содержащих все функции со значениями в Е. Решение остальных проблем для конечнозначных логик продвинуто в различной степени. Особая значимость конечнозначных логик связана ещё и с тем, что они позволяют описывать работу самых различных реальных вычислительных устройств и автоматов.

Примерами другой М. л. являются счётнозначные и континуум-значные логики (т. е. такие m-значные логики, для которых мощность m является, соответственно, счётной или континуальной). Эти модели играют важную роль в математической логике, моделей теории (См. Моделей теория) и в математическом анализе. К М. л. иногда относят и такие алгебры функций, в которых запас операций несколько отличается от указанного. Как правило, это достигается путём сужения описанного запаса или введения в операции некоторых функций рассматриваемой М. л.

Лит.: Яблонский С. В., Гаврилов Г. П., Кудрявцев В. Б., Функции алгебры логики и классы Поста, М., 1966; Яблонский С. В., Функциональные построения в k-значной логике, "Тр. Матем. института АН СССР", 1958, т. 51, с. 5-142.

В. Б. Кудрявцев.

МНОГОЗНАЧНАЯ ЛОГИКА         
общее наименование логических систем, в которых, помимо двух значений истинности ("истина" и "ложь"), рассматриваются и др. значения (напр., "бессмысленно", "неопределенно" и т. п.). Широко применяются в логической семантике и кибернетике.
Многозначная логика         
Многозначная логика — это логика, в которой логические выражения могут принимать значения из множества, содержащего более, чем два элемента. При этом некоторые из этих значений считаются истинными.

Википедия

Многозначная логика

Многозначная логика — это логика, в которой логические выражения могут принимать значения из множества, содержащего более, чем два элемента. При этом некоторые из этих значений считаются истинными. Такими свойствами многозначная логика отличается от классической логики Аристотеля, в которой логические выражения могут принимать только одно из двух возможных значений — «истина» или «ложь». Однако классическая двухзначная логика может быть дополнена до n-значной с n > 2.

Наиболее популярными в литературе являются трёхзначная логика (например, логика Яна Лукасевича и Стивена Клини, которая принимает значения «истина», «ложь» и «неизвестно»), конечнозначная (может иметь более трёх значений) и бесконечнозначная логики (сюда относят вероятностную логику с непрерывной шкалой значений истинности от 0 до 1, а также нечёткую логику).

В жизни же наиболее популярной является десятизначная (десятичная) логика на множестве целых десятичных чисел {0,1,2,3,4,5,6,7,8,9}. Например, многие почти каждый день складывают два одноразрядных десятичных целых числа, не зная, что при этом они производят логическую операцию (функцию) десятичного одноразрядного бинарного (двухаргументного) сложения.

Что такое Многозн<font color="red">а</font>чная л<font color="red">о</font>гика - определение