Мохоровичича поверхность - определение. Что такое Мохоровичича поверхность
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Мохоровичича поверхность - определение

ГРАНИЦА МЕЖДУ КОРОЙ И МАНТИЕЙ ЗЕМЛИ
Граница Мохоровичича; Поверхность Мохо
  • Карта глубины залегания поверхности Мохоровичича
  • Многолучевое распространение акустических волн за счет рефракции на границах сред.
Найдено результатов: 154
МОХОРОВИЧИЧА ПОВЕРХНОСТЬ      
граница раздела между земной корой и мантией Земли; выявлена в 1909 югославским сейсмологом А. Мохоровичичем (1857-1936). Скорость продольных сейсмических волн при переходе через поверхность Мохоровичича возрастает скачком с 6,7-7,6 до 7,9-8,2 км/с, а плотность с 2,9-3,0 до 3,1-3,5 т/м3.
Мохоровичича поверхность      

граница раздела между земной корой (См. Земная кора) и мантией Земли (См. Мантия Земли). М. п. установлена по сейсмическим данным: скорость продольных сейсмических волн при переходе (сверху вниз) через М. п. возрастает скачком с 6,7-7,6 до 7,9-8,2 км/сек, а поперечных - с 3,6-4,2 до 4,4-4,7 км/сек. Различные геофизические, геологические и др. данные указывают на то, что плотность вещества тоже возрастает скачком, предположительно, с 2,9-3 до 3,1-3,5 т/м3. Наиболее вероятно, что М. п. разделяет слои разного химического состава. М. п. названа по имени открывшего её А. Мохоровичича. См. также Земля.

Поверхность Мохоровичича         
Пове́рхность или грани́ца Мохоро́вичича (сокр. граница Мохо) — нижняя граница земной коры, отделяющая земную кору от мантии, на которой происходит скачкообразное увеличение скоростей продольных сейсмических волн с 6,7—7,6 до 7,9— и поперечных — с 3,6—4,2 до 4,4—.
Поверхность Ферми         
ПОВЕРХНОСТЬ ПОСТОЯННОЙ ЭНЕРГИИ В K-ПРОСТРАНСТВЕ, РАВНОЙ ЭНЕРГИИ ФЕРМИ В МЕТАЛЛАХ ИЛИ ВЫРОЖДЕННЫХ ПОЛУПРОВОДНИКАХ.
Ферми поверхность; Ферми-поверхность
Поверхность Ферми — поверхность постоянной энергии в k-пространстве, равной энергии Ферми в металлах или вырожденных полупроводниках. Знание формы поверхности Ферми играет важную роль во всей физике металлов и вырожденных полупроводников, так как благодаря вырожденности электронного газа транспортные свойства его, такие как проводимость, магнетосопротивление зависят только от электронов вблизи поверхности Ферми. Поверхность Ферми разделяет заполненные состояния от пустых при абсолютном нуле температур.
Ферми поверхность         
ПОВЕРХНОСТЬ ПОСТОЯННОЙ ЭНЕРГИИ В K-ПРОСТРАНСТВЕ, РАВНОЙ ЭНЕРГИИ ФЕРМИ В МЕТАЛЛАХ ИЛИ ВЫРОЖДЕННЫХ ПОЛУПРОВОДНИКАХ.
Ферми поверхность; Ферми-поверхность

изоэнергетическая поверхность в пространстве квазиимпульсов р, отделяющая область запятых электронных состоянии металла от области, в которой при Т = 0 К электронов нет. За большинство свойств металлов (См. Металлы) ответственны электроны, расположенные на Ф. п. и в узкой области пространства Квазиимпульсов вблизи неё. Это связано с высокой концентрацией электронов проводимости в металле, плотно заполняющих уровни в зоне проводимости (см. Вырожденный газ, Твёрдое тело). Каждый металл характеризуется своей Ф. п., причём формы поверхностей разнообразны (рис.). Для "газа свободных электронов" Ф. п. - сфера. Объём, ограниченный Ф. п. ΩF (приходящейся на 1 элементарную ячейку (См. Элементарная ячейка) в пространстве квазиимпульсов), определяется концентрацией n электронов проводимости в металле: 2ΩF/(2πħ)3 = n. Средние размеры Ф. п. для хороших металлов Ферми поверхность ħ/a, где ħ - Планка постоянная, а - постоянная решётки, обычно n 1/a3. У большинства металлов, кроме большой Ф. п., обнаружены малые полости, объём которых значительно меньше, чем (2πħ)3n/2. Эти полости определяют многие квантовые свойства металлов в магнитном поле (например, де Хааза - ван Альфена эффект (См. Де Хааза - ван Альфена эффект)). У полуметаллов (См. Полуметаллы) объём Ф. п. мал по сравнению с размерами элементарной ячейки в пространстве квазиимпульсов. Если занятые электронами состояния находятся внутри Ф. п., то она называется электронной, если же внутри Ф. п. электронные состояния свободны, то такая поверхность называется дырочной. Возможно одновременное существование обеих Ф. п. Например, у Bi Ф. п. состоит из 3 электронных и 1 дырочного эллипсоидов. В Ф. п. находит отражение Симметрия кристаллов. В частности, они периодичны с периодом 2πħb, где b - произвольный вектор обратной решётки. Все Ф. п. обладают центром симметрии. Встречаются Ф. п. сложной топологии (с самопересечениями), которые одновременно являются и электронными, и дырочными. Если Ф. п. непрерывно проходит через всё пространство квазиимпульсов, она называется открытой. Если Ф. п. распадается на полости, каждая из которых помещается в одной элементарной ячейке пространства квазиимпульсов, она называется замкнутой, например у Li, Au, Си, Ag - открытые Ф. п., у К, Na, Rb, Cs, In, Bi, Sb, Al - замкнутые. Иногда Ф. п. состоит из открытых и замкнутых полостей. Скорости электронов, расположенных на Ф. п.: υF ≈ 108 см/сек, вектор (направлен по нормали к Ф. п.

Геометрические характеристики Ф. п. (форма, кривизна, площади сечений и т.п.) связаны с физескими свойствами металлов, что позволяет строить Ф. п. по экспериментальным данным. Например, Магнетосопротивление металла зависит от того, открытая Ф. п. или замкнутая, а знак константы Холла (см. Холла эффект) от того, электронная она или дырочная. Период осцилляций магнитного момента (в эффекте де Хааза - ван Альфена) определяется экстремальной (по проекции квазиимпульса на магнитное поле) площадью сечения Ф. п. Поверхностный импеданс металла в условиях аномального Скин-эффекта зависит от средней кривизны Ф. п. Период (по магнитному полю) осцилляций коэффициета поглощения Ультразвука металлом обратно пропорционален экстремальному диаметру Ф. п. Частота циклотронного резонанса (См. Циклотронный резонанс) определяет эффективную массу (См. Эффективная масса) электрона, знание которой позволяет найти скорость электронов на Ф. п. Для большинства одноатомных металлов и многих интерметаллических соединений Ф. п. уже изучены. Теоретическое построение Ф. п. основано на модельных представлениях о движении валентных электронов в силовом поле ионов.

Лит.: Каганов М. И., Филатов А. П., Поверхность Ферми, М., 1969.

М. И. Каганов.

Различный типы ферми поверхностей.

ФЕРМИ ПОВЕРХНОСТЬ         
ПОВЕРХНОСТЬ ПОСТОЯННОЙ ЭНЕРГИИ В K-ПРОСТРАНСТВЕ, РАВНОЙ ЭНЕРГИИ ФЕРМИ В МЕТАЛЛАХ ИЛИ ВЫРОЖДЕННЫХ ПОЛУПРОВОДНИКАХ.
Ферми поверхность; Ферми-поверхность
изоэнергетическая поверхность, ограничивающая в пространстве квазиимпульсов область энергетических состояний, занятых электронами проводимости при Т = ОК. Поверхность Ферми - важнейшее понятие теории металлов. Многие их свойства (теплоемкость, магнитная восприимчивость, электропроводность и т. д.) определяются главным образом электронами с импульсами, лежащими вблизи поверхности Ферми. Названа по имени Э. Ферми.
ЦИЛИНДРИЧЕСКАЯ ПОВЕРХНОСТЬ         
ПОВЕРХНОСТЬ ИЗ ПАРАЛЛЕЛЬНЫХ ЛИНИЙ, ПРОХОДЯЩИХ ЧЕРЕЗ НАПРАВЛЯЮЩУЮ
Цилиндр (поверхность)
множество параллельных прямых (образующих), пересекающих данную кривую (направляющую). Если направляющая - окружность, то цилиндрическая поверхность называется круглым цилиндром или цилиндром вращения.
Цилиндрическая поверхность         
ПОВЕРХНОСТЬ ИЗ ПАРАЛЛЕЛЬНЫХ ЛИНИЙ, ПРОХОДЯЩИХ ЧЕРЕЗ НАПРАВЛЯЮЩУЮ
Цилиндр (поверхность)

поверхность, описываемая прямой линией (образующей Ц. п.), которая движется, оставаясь параллельной заданному направлению и скользя по заданной кривой (направляюще и). Если ось Oz прямоугольной системы координат параллельна образующей Ц. п., то уравнение Ц. п. будет F (x, у) = 0. Если образующие Ц. п. параллельны прямой ax + by + с = 0, лежащей в плоскости хОу, то уравнение Ц. п. имеет вид z = f (ax + by). Если направляющей служит окружность, эллипс, гипербола или парабола, то Ц. п. называется соответственно круглым, эллиптическим, гиперболическим или параболическим цилиндром.

Удельная поверхность         
Поверхность удельная
Цилиндрическая поверхность         
ПОВЕРХНОСТЬ ИЗ ПАРАЛЛЕЛЬНЫХ ЛИНИЙ, ПРОХОДЯЩИХ ЧЕРЕЗ НАПРАВЛЯЮЩУЮ
Цилиндр (поверхность)
Цилиндрическая поверхность — поверхность второго порядка, образуемая движением прямой (в каждом своём положении называемой образующей) вдоль кривой (называемой направляющей) так, что прямая постоянно остаётся параллельной своему начальному положению.

Википедия

Поверхность Мохоровичича

Пове́рхность или грани́ца Мохоро́вичича (сокр. граница Мохо) — нижняя граница земной коры, отделяющая земную кору от мантии, на которой происходит скачкообразное увеличение скоростей продольных сейсмических волн с 6,7—7,6 до 7,9—8,2 км/с и поперечных — с 3,6—4,2 до 4,4—4,7 км/с. Плотность вещества также возрастает скачком, предположительно, с 2,9—3 до 3,1—3,5 т/м³.

Поверхность Мохоровичича прослеживается по всему земному шару на глубине от 5 до 10 км под океанической корой и от 20 до 90 км под континентальной корой. Она может не совпадать с границей земной коры и мантии, вероятнее всего, являясь границей раздела слоёв различного химического состава. Поверхность, как правило, повторяет рельеф местности. В общих чертах форма поверхности Мохоровичича представляет собой зеркальное отражение рельефа внешней поверхности литосферы: под океанами она ближе к поверхности, под континентальными равнинами — глубже.

Открыта в 1909 году хорватским геофизиком и сейсмологом Андрией Мохоровичичем на основании анализа сейсмических данных — он заметил, что сейсмограмма неглубоких землетрясений имеет два и более акустических сигналов: прямой и преломлённый.

Что такое МОХОРОВИЧИЧА ПОВЕРХНОСТЬ - определение