НУКЛЕИНОВЫЕ КИСЛОТЫ: СТРУКТУРА ФРАГМЕНТА КОНКРЕТНОЙ ДНК - определение. Что такое НУКЛЕИНОВЫЕ КИСЛОТЫ: СТРУКТУРА ФРАГМЕНТА КОНКРЕТНОЙ ДНК
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое НУКЛЕИНОВЫЕ КИСЛОТЫ: СТРУКТУРА ФРАГМЕНТА КОНКРЕТНОЙ ДНК - определение

ВЫСОКОМОЛЕКУЛЯРНОЕ ОРГАНИЧЕСКОЕ СОЕДИНЕНИЕ, БИОПОЛИМЕР (ПОЛИНУКЛЕОТИД), ОБРАЗОВАННЫЙ ОСТАТКАМИ НУКЛЕОТИДОВ
Полинуклеотид; Полинуклеотиды; Нуклеиновые кислоты
  • лигазы]]
  • Фрагмент полимерной цепочки ДНК
  • Гелеобразный осадок нуклеиновой кислоты
  • Структура транспортной РНК
Найдено результатов: 358
НУКЛЕИНОВЫЕ КИСЛОТЫ: СТРУКТУРА ФРАГМЕНТА КОНКРЕТНОЙ ДНК      
К статье НУКЛЕИНОВЫЕ КИСЛОТЫ
Трехмерная структура. Важной особенностью нуклеиновых кислот является регулярность пространственного расположения составляющих их атомов, установленная рентгеноструктурным методом. Молекула ДНК состоит из двух противоположно направленных цепей (иногда содержащих миллионы нуклеотидов), удерживаемых вместе водородными связями между основаниями:
Водородные связи, соединяющие основания противоположных цепей, относятся к категории слабых, но благодаря своей многочисленности в молекуле ДНК они прочно стабилизируют ее структуру. Однако если раствор ДНК нагреть примерно до 60. С, эти связи рвутся и цепи расходятся - происходит денатурация ДНК (плавление).
Обе цепи ДНК закручены по спирали относительно воображаемой оси, как будто они навиты на цилиндр. Эта структура называется двойной спиралью. На каждый виток спирали приходится десять пар оснований.
Правило комплементарности. Уотсон и Крик показали, что образование водородных связей и регулярной двойной спирали возможно только тогда, когда более крупное пуриновое основание аденин (А) в одной цепи имеет своим партнером в другой цепи меньшее по размерам пиримидиновое основание тимин (Т), а гуанин (Г) связан с цитозином (Ц). Эту закономерность можно представить следующим образом:
Соответствие А?Т и Г?Ц называют правилом комплементарности, а сами цепи . комплементарными. Согласно этому правилу, содержание аденина в ДНК всегда равно содержанию тимина, а количество гуанина - количеству цитозина. Следует отметить, что две цепи ДНК, различаясь химически, несут одинаковую информацию, поскольку вследствие комплементарности одна цепь однозначно задает другую.
Структура РНК менее упорядочена. Обычно это одноцепочечная молекула, хотя РНК некоторых вирусов состоит из двух цепей. Но даже такая РНК более гибка, чем ДНК. Некоторые участки в молекуле РНК взаимно комплементарны и при изгибании цепи спариваются, образуя двухцепочечные структуры (шпильки). В первую очередь это относится к транспортным РНК (тРНК). Некоторые основания в тРНК подвергаются модификации уже после синтеза молекулы. Например, иногда происходит присоединение к ним метильных групп.
Нуклеиновая кислота         
Нуклеи́новая кислота (от  — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
НУКЛЕИНОВЫЕ КИСЛОТЫ         
(полинуклеотиды) , высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты - дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК) кислоты. Последовательность нуклеотидов в нуклеиновых кислотах определяет их первичную структуру. Нуклеиновые кислоты присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению и передаче генетической информации, участвуют в механизмах, при помощи которых она реализуется в процессе синтеза клеточных белков. В организме находятся в свободном состоянии и в комплексе с белками (нуклеопротеиды).
ПОЛИНУКЛЕОТИДЫ         
полимерные органические соединения, образованные остатками мононуклеотидов. Природные полинуклеотиды - нуклеиновые кислоты.
полинуклеотид         
см. Нуклеиновая кислота.
Полинуклеотиды         
(от Поли... и Нуклеотиды

природные или синтетические биополимеры, состоящие из остатков многих нуклеотидов (мононуклеотидов). Природные П. - Нуклеиновые кислоты - играют важнейшую биологическую роль, осуществляя во всех организмах хранение и реализацию, а также передачу потомству генетической информации (См. Генетическая информация).

Нуклеиновые кислоты         

полинуклеотиды, важнейшие биологически активные Биополимеры, имеющие универсальное распространение в живой природе. Содержатся в каждой клетке всех организмов. Н. к. были открыты в 1868 швейцарским учёным Ф. Мишером в клеточных ядрах (отсюда название: лат. nucleus - ядро), изолированных из гноя, а также из спермиев лосося. Позднее Н. к. были обнаружены не только в ядре, но и в цитоплазме. Различают два главных типа Н. к. - дезоксирибонуклеиновые кислоты (См. Дезоксирибонуклеиновая кислота), или ДНК, содержащиеся преимущественно в ядрах клеток, и Рибонуклеиновые кислоты, или РНК, находящиеся главным образом в цитоплазме.

Молекулы Н. к. - длинные полимерные цепочки с молекулярной массой 2,5 · 104-4 · 109, построенные из мономерных молекул - нуклеотидов (См. Нуклеотиды) так, что гидроксильные группы у 31 и 51 углеродных атомов углевода соседних нуклеотидов связаны остатком фосфорной кислоты. В состав РНК в качестве углевода входит рибоза, а азотистые компоненты представлены аденином, гуанином (Пуриновые основания), урацилом и цитозином (Пиримидиновые основания). В ДНК углеводным компонентом является дезоксирибоза, а урацил заменен тимином (5-метилурацилом). Фосфат и сахар составляют неспецифическую часть в молекуле нуклеотида, а пуриновое или пиримидиновое основание - специфическую. В составе большинства Н. к. обнаружены в небольших количествах также некоторые другие (главным образом метилированные) производные пуринов и пиримидинов - т. н. минорные основания. Цепи Н. к. содержат от нескольких десятков до многих тысяч нуклеотидных остатков, расположенных линейно в определённой последовательности, уникальной для данной Н. к. Т. о., как РНК, так и ДНК представлены огромным множеством индивидуальных соединений. Линейная последовательность нуклеотидов определяет первичную структуру Н. к. Вторичная структура Н. к. возникает в результате сближения определённых пар оснований, а именно: гуанина с цитозином и аденина с урацилом (или тимином) по принципу комплементарности за счёт водородных связей, а также гидрофобных взаимодействий между ними.

Биологическая роль Н. к. заключается в хранении, реализации и передаче наследственной информации, "записанной" в молекулах Н. к. в виде последовательности нуклеотидов - т. н. генетического кода (См. Генетический код). При делении клеток - Митозе - происходит самокопирование ДНК - её Репликация, в результате чего каждая дочерняя клетка получает равное количество ДНК, заключающей программу развития всех признаков материнской клетки. Реализация этой генетической информации в определённые признаки осуществляется путём биосинтеза молекул РНК на молекуле ДНК (Транскрипция) и последующего биосинтеза белков с участием разных типов РНК (Трансляция).

Исследование строения и функций Н. к. в 50-70-х гг. 20 в. обусловило огромные успехи молекулярной генетики (См. Молекулярная генетика) и молекулярной биологии (См. Молекулярная биология). Важнейшим этапом в изучении химии и биологии Н. к. было создание в 1953 Дж. Уотсоном и Ф. Криком модели ДНК (двойная спираль), что позволило объяснить многие её свойства и биологические функции. Н. к. обнаружены также в клеточных органеллах (хлоропластах, митохондриях и др.), где функции их изучаются. Сравнительный анализ Н. к. в разных группах организмов играет важную роль при решении вопросов систематики и эволюции. Каждый вид организмов содержит специфичные Н. к. (как РНК, так и ДНК). Степень сходства в строении Н. к. указывает на уровень филогенетической близости организмов. См. также Вирусы, Ген, Наследственность.

Лит.: Нуклеиновые кислоты, пер. с англ., М., 1963; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; Дэвидсон Дж., Биохимия нуклеиновых кислот, пер. с англ., М., 1968; Химия и биохимия нуклеиновых кислот, под ред. И. Б. Збарского и С. С. Дебова, Л., 1968; Мирский А., Открытие ДНК, в кн. Молекулы и клетки, пер. с англ., в. 4, М., 1969; Органическая химия нуклеиновых кислот, М., 1970; Методы исследования нуклеиновых кислот, пер. с англ., М., 1970; Строение ДНК и положение организмов в системе, М., 1972; Hofmann Е., Dynamische Biochemie, Bd 1 - Eiweisse und Nucleinsäuren als biologische Makromoleküle, 2 Aufl., B., 1970.

И. Б. Збарский.

НУКЛЕИНОВЫЕ КИСЛОТЫ         
биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому.
Нуклеиновые кислоты были впервые выделены из клеток гноя человека и спермы лосося швейцарским врачом и биохимиком Ф.Мишером между 1869 и 1871. Впоследствии было установлено, что существует два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК), однако их функции долго оставались неизвестными.
В 1928 английский бактериолог Ф.Гриффит обнаружил, что убитые патогенные пневмококки могут изменять генетические свойства живых непатогенных пневмококков, превращая последние в патогенные. В 1945 микробиолог О.Эвери из Рокфеллеровского института в Нью-Йорке сделал важное открытие: он показал, что способность к генетической трансформации обусловлена переносом ДНК из одной клетки в другую, а следовательно, генетический материал представляет собой ДНК. В 1940-1950 Дж.Бидл и Э.Тейтум из Станфордского университета (шт. Калифорния) обнаружили, что синтез белков, в частности ферментов, контролируется специфическими генами. В 1942 Т.Касперсон в Швеции и Ж.Браше в Бельгии открыли, что нуклеиновых кислот особенно много в клетках, активно синтезирующих белки. Все эти данные наводили на мысль, что генетический материал - это нуклеиновая кислота и что она как-то участвует в синтезе белков. Однако в то время многие полагали, что молекулы нуклеиновых кислот, несмотря на их большую длину, имеют слишком простую периодически повторяющуюся структуру, чтобы нести достаточно информации и служить генетическим материалом. Но в конце 1940-х годов Э.Чаргафф в США и Дж.Уайатт в Канаде, используя метод распределительной хроматографии на бумаге, показали, что структура ДНК не столь проста и эта молекула может служить носителем генетической информации.
Структура ДНК была установлена в 1953 М.Уилкинсом, Дж.Уотсоном и Ф.Криком в Англии. Это фундаментальное открытие позволило понять, как происходит удвоение (репликация) нуклеиновых кислот. Вскоре после этого американские исследователи А.Даунс и Дж.Гамов предположили, что структура белков каким-то образом закодирована в нуклеиновых кислотах, а к 1965 эта гипотеза была подтверждена многими исследователями: Ф.Криком в Англии, М.Ниренбергом и С.Очоа в США, Х.Кораной в Индии. Все эти открытия, результат столетнего изучения нуклеиновых кислот, произвели подлинную революцию в биологии. Они позволили объяснить феномен жизни в рамках взаимодействия между атомами и молекулами.
Типы и распространение. Как мы уже говорили, есть два типа нуклеиновых кислот: ДНК и РНК. ДНК присутствует в ядрах всех растительных и животных клеток, где она находится в комплексе с белками и является составной частью хромосом. У особей каждого конкретного вида содержание ядерной ДНК обычно одинаково во всех клетках, кроме гамет (яйцеклеток и сперматозоидов), где ДНК вдвое меньше. Таким образом, количество клеточной ДНК видоспецифично. ДНК найдена и вне ядра: в митохондриях ("энергетических станциях" клеток) и в хлоропластах (частицах, где в растительных клетках идет фотосинтез). Эти субклеточные частицы обладают некоторой генетической автономией.
Бактерии и цианобактерии (сине-зеленые водоросли) содержат вместо хромосом одну или две крупные молекулы ДНК, связанные с небольшим количеством белка, и часто - молекулы ДНК меньшего размера, называемые плазмидами. Плазмиды несут полезную генетическую информацию, например содержат гены устойчивости к антибиотикам, но для жизни самой клетки они несущественны.
Некоторое количество РНК присутствует в клеточном ядре, основная же ее масса находится в цитоплазме - жидком содержимом клетки. Бльшую ее часть составляет рибосомная РНК (рРНК). Рибосомы - это мельчайшие тельца, на которых идет синтез белка. Небольшое количество РНК представлено транспортной РНК (тРНК), которая также участвует в белковом синтезе. Однако оба этих класса РНК не несут информации о структуре белков - такая информация заключена в матричной, или информационной, РНК (мРНК), на долю которой приходится лишь небольшая часть суммарной клеточной РНК.
Генетический материал вирусов представлен либо ДНК, либо РНК, но никогда обеими одновременно.
См. также:
ДНК-полимераза         
  • date=20170201175023 }})
  • [[Репликация ДНК]]
ДНК полимераза; ДНК-зависимая ДНК-полимераза; ДНК-полимеразы
ДНК-полимераза — фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент «читает» и использует в качестве шаблона. Тип нового нуклеотида определяется по принципу комплементарности с шаблоном, с которого ведётся считывание. Собираемая молекула комплементарна шаблонной моноспирали и идентична второму компоненту двойной спирали.
ДНК-метилтрансфераза         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
ДНК метилтрансфераза-1; ДНК-метилтрансферазы; ДНК-метилаза; ДНК-метилазы; МТаза
ДНК-метилтрансфера́зы (ДНК-метилазы, ) — группа ферментов, катализирующих метилирование нуклеотидных остатков в составе ДНК. Активность метилтрансфераз, заключающаяся в переносе метильных (CH3—) групп на азотистое основание цитозин в составе ДНК, ведет к изменению свойств ДНК, при этом изменяется активность, функции соответствующих генов, а также пространственная структура нуклеиновой кислоты (конформация).

Википедия

Нуклеиновая кислота

Нуклеи́новая кислота (от лат. nucleus — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. л

Что такое НУКЛЕИНОВЫЕ КИСЛОТЫ: СТРУКТУРА ФРАГМЕНТА КОНКРЕТНОЙ ДНК - определение