Неделимых метод - определение. Что такое Неделимых метод
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Неделимых метод - определение

СОВОКУПНОСТЬ ПРИЁМОВ ДЛЯ ВЫЧИСЛЕНИЯ ПЛОЩАДЕЙ ФИГУР ИЛИ ОБЪЁМОВ ГЕОМЕТРИЧЕСКИХ ТЕЛ
Принцип Кавальери; Неделимых метод; Кавальери принцип
  • Иллюстрация принципа Кавальери — две стопки монет имеют разную форму, но равный объём
  • Вычисление объёма полушария
  • Парадокс Кавальери
  • То же в анимации
  • Вычисление площади круга
Найдено результатов: 574
Неделимых метод         
("Недели́мых" ме́тод)

в математике, возникшее в конце 16 в. наименование совокупности довольно разнородных приёмов определения отношений площадей или объёмов фигур. В основе "Н." м. лежит сравнение "неделимых" элементов (или же совокупностей элементов), так или иначе образующих фигуры, отношение размеров которых требуется найти. Само понятие о "неделимых" в разные времена различные учёные понимали по-разному.

"Н." м. ведёт начало от древнегреческой науки. Демокрит, по-видимому, рассматривал тела как "суммы" чрезвычайно большого числа чрезвычайно малых "неделимых" атомов; Архимед нашёл площади и объёмы многих фигур, сочетая принципы учения о рычаге с представлением, что плоская фигура состоит из бесчисленного количества параллельных прямых отрезков, а геометрическое тело - из бесчисленного количества параллельных плоских сечений. Однако в древности же подобные представления и методы подверглись серьёзной критике. Архимед, например, считал обязательным передоказывать результаты, полученные с помощью "Н." м., Исчерпывания методом. Споры о структуре континуума возродились в средневековой науке и продолжаются до настоящего времени (см. Множеств теория). Идеи "Н." м. были возрождены в математических исследованиях на рубеже 16-17 вв. И. Кеплером и особенно Б. Кавальери, с именем которого связывают чаще всего "Н." м. Развитый Кавальери "Н." м. был затем существенно преобразован Э. Торричелли, Дж. Валлисом, Б. Паскалем (См. Паскаль) и др. выдающимися учёными и послужил одним из этапов в создании интегрального исчисления. См. Интегральное исчисление.

Метод неделимых         
Метод неделимых — возникшее в конце XVI века наименование совокупности приёмов, предназначенных для вычисления площадей геометрических фигур или объёмов геометрических тел.
Кавальери принцип         

состоит в следующем: если при пересечении двух тел любой плоскостью, параллельной некоторой заданной плоскости, получаются сечения равной площади, то объёмы тел равны между собой. Это положение (и аналогичное ему для случая плоских фигур), известное ещё древнегреческим математикам, называют обычно К. п., хотя итальянский математик Б. Кавальери в своей "Геометрии" (1635) не берёт его за принцип, а доказывает.

Метод (программирование)         
В ПРОГРАММИРОВАНИИ - ФУНКЦИЯ ИЛИ ПРОЦЕДУРА, СВЯЗАННАЯ С КЛАССОМ
Метод (объектно-ориентированное программирование); Метод (языки программирования); Функция-член
Ме́тод в объектно-ориентированном программировании — это функция или процедура, принадлежащаяПод принадлежностью подразумевается, что метод явно ассоциирован с обработкой определённого класса объектов.
Метод Д’Ондта         
ОДИН ИЗ СПОСОБОВ РАСПРЕДЕЛЕНИЯ МАНДАТОВ ПРИ ПРОПОРЦИОНАЛЬНОМ ПРЕДСТАВИТЕЛЬСТВЕ
Метод Джефферсона; Метод д'Ондта
Метод Д’Ондта (также известен как метод Джефферсона) — один из способов распределения мандатов при пропорциональном представительстве, был предложен бельгийским математиком . В начале XXI века используется в ряде стран, таких, как Албания, Аргентина, Армения, Австрия, Бельгия, Бразилия, Болгария, Венгрия, Венесуэла, Восточный Тимор, Германия (до 1985), Дания, Исландия, Испания, Израиль, Колумбия, Македония, Молдавия, Нидерланды, Парагвай, Польша, Португалия, Румыния, Северная Ирландия, Сербия, Словения, Турция, Уэльс, Финляндия, Хорватия, Черногория, Чехия, Чил�
Метод Галёркина         
МЕТОД ПРИБЛИЖЁННОГО РЕШЕНИЯ КРАЕВОЙ ЗАДАЧИ
Метод Галеркина; Метод Бубнова — Галёркина; Метод Бубнова — Галеркина; Метод Бубнова-Галёркина; Метод Бубнова-Галеркина; Бубнова — Галёркина метод; Метод Галёркина — Петрова
Метод Галёркина (метод Бубнова — Галёркина) — метод приближённого решения краевой задачи для дифференциального уравнения L[u]=f(x). Здесь оператор L[\cdot] может содержать частные или полные производные искомой функции.
Доплеровская спектроскопия         
  • Экзопланеты, открытые методом Доплера, по годам в сравнении с другими методами
Метод радиальных скоростей; Спектрометрический метод; Метод Доплера
Доплеровская спектроскопия — метод обнаружения экзопланет, известен также как спектрометрическое измерение лучевой (радиальной) скорости звёзд. Был предложен в 1952 году американским астрономом русского происхождения Отто Струве.
Ньютона метод         
  • Иллюстрация расхождения метода Ньютона, применённого к функции <math>\scriptstyle{f(x)=x^3-2x+2}</math> с начальным приближением в точке <math>\scriptstyle{x_0=0}</math>.
  • График сходимости.
  • График последовательных приближений.
  • График производной функции <math>\scriptstyle{f(x)=x+x^2\sin(2/x)}</math> при приближении <math>\scriptstyle{x}</math> к нулю справа.
  • Иллюстрация метода Ньютона (синим изображена функция <math>\scriptstyle{f(x)}</math>, ноль которой необходимо найти, красным — касательная в точке очередного приближения <math>\scriptstyle{x_n}</math>). Здесь мы можем увидеть, что последующее приближение <math>\scriptstyle{x_{n+1}}</math> лучше предыдущего <math>\scriptstyle{x_n}</math>.
  • Иллюстрация последовательных приближений метода одной касательной, применённого к функции <math>\scriptstyle{f(x)=e^x-2}</math> с начальным приближением в точке <math>\scriptstyle{x_0=1{,}8}</math>.
  • [[Бассейны Ньютона]] для полинома пятой степени <math>\scriptstyle{p(x)=x^5-1}</math>. Разными цветами закрашены области притяжения для разных корней. Более тёмные области соответствуют большему числу итераций.
ЧИСЛЕННЫЙ МЕТОД РЕШЕНИЯ УРАВНЕНИЙ, ИСПОЛЬЗУЮЩИЙ ВЫЧИСЛЕНИЕ ПРОИЗВОДНОЙ
Метод касательной; Метод касательных; Метод Ньютона-Рафсона; Алгоритм Ньютона; Метод Ньютона — Рафсона; Метод Гаусса — Ньютона; Ньютона метод

метод приближённого нахождения корня x0 уравнения f (x) = 0, называемый также методом касательных. Н. м. состоит в том, что по исходному ("первому") приближению х = a1 находят второе (более точное), проводя касательную к графику (см. рис.) у = f (x) в точке А [а1 f (a1)] до её пересечения с осью Ox; точка пересечения х = a1 - f (a1)/f'(a1) и принимается за новое значение a2. корня. Повторяя в случае необходимости этот процесс, получают всё более и более точные приближения a2, a3,... корня x0 при условии, что производная f'(x) монотонна и сохраняет знак на сегменте, содержащем x0. Ошибка ε2 = x0 -a2 нового значения a2 связана со старой ошибкой ε1 = x0 - a1 формулой , где - значение второй производной функции f (x) в некоторой точке x, лежащей между x0 и a1. Иногда рекомендуется Н. м. применять одновременно с к.-л. другим способом, например с Линейного интерполирования методом. Н. м. допускает обобщения, которые позволяют применять его для решения уравнений F (x) = 0 в нормированных пространствах (F- оператор в этом пространстве), в частности для решения систем уравнений и функциональных уравнений. Метод разработан И. Ньютоном в 1669.

Рис. к ст. Ньютона метод.

Метод Ньютона         
  • Иллюстрация расхождения метода Ньютона, применённого к функции <math>\scriptstyle{f(x)=x^3-2x+2}</math> с начальным приближением в точке <math>\scriptstyle{x_0=0}</math>.
  • График сходимости.
  • График последовательных приближений.
  • График производной функции <math>\scriptstyle{f(x)=x+x^2\sin(2/x)}</math> при приближении <math>\scriptstyle{x}</math> к нулю справа.
  • Иллюстрация метода Ньютона (синим изображена функция <math>\scriptstyle{f(x)}</math>, ноль которой необходимо найти, красным — касательная в точке очередного приближения <math>\scriptstyle{x_n}</math>). Здесь мы можем увидеть, что последующее приближение <math>\scriptstyle{x_{n+1}}</math> лучше предыдущего <math>\scriptstyle{x_n}</math>.
  • Иллюстрация последовательных приближений метода одной касательной, применённого к функции <math>\scriptstyle{f(x)=e^x-2}</math> с начальным приближением в точке <math>\scriptstyle{x_0=1{,}8}</math>.
  • [[Бассейны Ньютона]] для полинома пятой степени <math>\scriptstyle{p(x)=x^5-1}</math>. Разными цветами закрашены области притяжения для разных корней. Более тёмные области соответствуют большему числу итераций.
ЧИСЛЕННЫЙ МЕТОД РЕШЕНИЯ УРАВНЕНИЙ, ИСПОЛЬЗУЮЩИЙ ВЫЧИСЛЕНИЕ ПРОИЗВОДНОЙ
Метод касательной; Метод касательных; Метод Ньютона-Рафсона; Алгоритм Ньютона; Метод Ньютона — Рафсона; Метод Гаусса — Ньютона; Ньютона метод
Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требует
Метод Адамса         
Адамса метод
Ме́тод А́дамса — конечноразностный многошаговый метод численного интегрирования обыкновенных дифференциальных уравнений первого порядка. В отличие от метода Рунге-Кутты использует для вычисления очередного значения искомого решения не одно, а несколько значений, которые уже вычислены в предыдущих точках.

Википедия

Метод неделимых

Метод неделимых — возникшее в конце XVI века наименование совокупности приёмов, предназначенных для вычисления площадей геометрических фигур или объёмов геометрических тел. Идея метода для плоских фигур состояла в том, чтобы разделить эти фигуры на фигуры нулевой ширины («неделимые», обычно они представляют собой параллельные отрезки), которые потом «собираются» без изменения их длины и образуют другую фигуру, площадь которой уже известна (см. примеры ниже). Вычисление объёма пространственных тел происходит аналогично, только они разделяются не на отрезки, а на «неделимые» плоские фигуры. Формализация этих приёмов во многом определила в дальнейшем зарождение и развитие интегрального исчисления.

Наиболее полное выражение и теоретическое обоснование метод неделимых получил в работе итальянского математика Бонавентуры Кавальери «Геометрия неделимых непрерывных, выведенная новым способом» (лат. Geometria indivisibilibus continuorum nova quadam ratione promota, 1635 год)

Что такое Недел<font color="red">и</font>мых м<font color="red">е</font>тод - определение