Оптимизация - определение. Что такое Оптимизация
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Оптимизация - определение

ПРОЦЕСС МАКСИМИЗАЦИИ ВЫГОДНЫХ ХАРАКТЕРИСТИК, СООТНОШЕНИЙ
Оптимизатор
Найдено результатов: 38
ОПТИМИЗАЦИЯ         
,..1) процесс выбора наилучшего варианта из возможных...2) Процесс приведения системы в наилучшее (оптимальное) состояние.
Оптимизация         
(от лат. optimum - наилучшее)

процесс нахождения экстремума (глобального максимума или минимума) определённой функции или выбора наилучшего (оптимального) варианта из множества возможных. Наиболее надёжным способом нахождения наилучшего варианта является сравнительная оценка всех возможных вариантов (альтернатив). Если число альтернатив велико, при поиске наилучшей обычно используют методы математического программирования (См. Математическое программирование). Применить эти методы можно, если есть строгая постановка задачи: задан набор переменных, установлена область их возможного изменения (заданы ограничения) и определён вид целевой функции (функции, экстремум которой нужно найти) от этих переменных. Последняя представляет собой количественную меру (критерий) оценки степени достижения поставленной цели. В т. н. динамических задачах, когда ограничения, наложенные на переменные, зависят от времени, для нахождения наилучшего варианта действий используют методы оптимального управления и динамического программирования.

Результаты любых практических мероприятий характеризуются несколькими показателями, например затратами, объёмом выпускаемой продукции, временем, степенью риска и т.п. Рассматривая конкретную задачу О., устанавливают, может ли в качестве целевой функции (критерия оценки) быть принят один из показателей, характеризующих ожидаемые результаты реализации того или иного варианта, с условием, что на численные значения др. показателей наложены строгие ограничения. Так, при выборе наилучшего варианта производства заданного количества определённой продукции в качестве критерия иногда принимают затраты или время (при фиксированных затратах). При нахождении наилучшего варианта использования имеющегося оборудования, предназначенного для производства продукции одного вида в определённых условиях, критерием может служить объём выпуска этой продукции. Выбор метода О. для решения конкретной задачи зависит от вида целевой функции и характера ограничений. Применение методов математического программирования существенно ускоряет процесс решения задачи на нахождение экстремума благодаря тому, что сокращается число перебираемых вариантов.

В большинстве практических задач, в особенности в задачах, связанных с долгосрочным планированием, отсутствуют строгие ограничения на многие переменные (или показатели). В этих случаях имеют дело с задачами т. н. векторной оптимизации. Если каждый вариант характеризуется двумя показателями, значения которых переменны, например объёмом выпуска продукции и затратами, требуется установить, что лучше: затратить определённую сумму и произвести некоторое количество продукции или за счёт увеличения затрат увеличить объём выпуска продукции. При решении задач подобного типа математические методы позволяют отобрать из множества возможных вариантов рациональные, при которых определённые объёмы продукции производятся с минимальными затратами.

Чтобы среди большого числа рациональных вариантов найти оптимальный, нужна информация о предпочтительности различных сочетаний значений показателей, характеризующих варианты. При отсутствии этой информации наилучший вариант из числа рациональных выбирает руководитель, ответственный за принятие решения.

Сравнивая варианты, необходимо учитывать различные неопределённости, например неопределённость условий, в которых будет реализован тот или иной вариант. Выбирая, например, наилучший вариант производства определённой с.-х. культуры, рассматривают набор вариантов погоды, которая может быть в том или ином районе, и сопоставляют все "за" и "против" каждого варианта действий. Сравнение вариантов может производиться по совокупности значений одного показателя, характеризующего результат (если на все остальные показатели наложены ограничения). Так, при 4 вариантах погоды каждый вариант действий будет характеризоваться 4 значениями показателя. Если варианты характеризуются только одним показателем, значения которого переменны, то их сравнение в некоторых случаях можно проводить по формальному критерию (критерии максимина, минимаксного сожаления и т.п., рассматриваемые в теории статистических решений). В остальных случаях для сравнительной оценки вариантов нужно иметь шкалу предпочтений. При её отсутствии выбор осуществляет руководитель (на основе собственного опыта и интуиции или с помощью экспертов).

Лит.: Юдин Д. Б., Гольштейн Е. Г., Задачи и методы линейного программирования, М., 1961; Гурин Л. С., Дымарский Я. С., Меркулов А. Д., Задачи и методы оптимального распределения ресурсов, М., 1968; Вентцель Е. С., Исследование операций, М., 1972.

Ю. С. Солнышков.

ОПТИМИЗАЦИЯ         
и, мн. нет, ж.
1. мат. Нахождение наибольшего или наименьшего значения какой-нибудь функции.
2. Выбор оптимального варианта из множества возможных. О. процесса управления. Оптимиза-ционный - относящийся к оптимизации.
Оптимизация         
Оптимизация — процесс максимизации выгодных характеристик, соотношений (например, оптимизация производственных процессов и производства), и минимизации расходов.
Оптимизация (математика)         
  • Функции оптимизации]]. Симплексные вершины упорядочиваются по их значению, при этом 1 имеет наименьшее (лучшее) значение.
ВЫБОР НАИЛУЧШЕГО РЕШЕНИЯ; ЗАДАЧА НАХОЖДЕНИЯ ЭКСТРЕМУМА ЦЕЛЕВОЙ ФУНКЦИИ В НЕКОТОРОЙ ОБЛАСТИ КОНЕЧНОМЕРНОГО ВЕКТОРА
Математическое программирование; Теория оптимизации; Программирование математическое; Задача оптимизации; Методы оптимизации; Задача условной оптимизации; Задача безусловной оптимизации; Математическая оптимизация
Оптимизация (в математике, информатике и исследовании операций) — это задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.
Программирование математическое         
  • Функции оптимизации]]. Симплексные вершины упорядочиваются по их значению, при этом 1 имеет наименьшее (лучшее) значение.
ВЫБОР НАИЛУЧШЕГО РЕШЕНИЯ; ЗАДАЧА НАХОЖДЕНИЯ ЭКСТРЕМУМА ЦЕЛЕВОЙ ФУНКЦИИ В НЕКОТОРОЙ ОБЛАСТИ КОНЕЧНОМЕРНОГО ВЕКТОРА
Математическое программирование; Теория оптимизации; Программирование математическое; Задача оптимизации; Методы оптимизации; Задача условной оптимизации; Задача безусловной оптимизации; Математическая оптимизация

математическая дисциплина, посвящённая решению экстремальных задач определённого типа. См. Математическое программирование.

Математическое программирование         
  • Функции оптимизации]]. Симплексные вершины упорядочиваются по их значению, при этом 1 имеет наименьшее (лучшее) значение.
ВЫБОР НАИЛУЧШЕГО РЕШЕНИЯ; ЗАДАЧА НАХОЖДЕНИЯ ЭКСТРЕМУМА ЦЕЛЕВОЙ ФУНКЦИИ В НЕКОТОРОЙ ОБЛАСТИ КОНЕЧНОМЕРНОГО ВЕКТОРА
Математическое программирование; Теория оптимизации; Программирование математическое; Задача оптимизации; Методы оптимизации; Задача условной оптимизации; Задача безусловной оптимизации; Математическая оптимизация

математическая дисциплина, посвященная теории и методам решения задач о нахождении экстремумов функций на множествах, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами).

М. п. - раздел науки об исследовании операций (см. Операций исследование), охватывающий широкий класс задач управления, математическими моделями которых являются конечномерные экстремальные задачи. Задачи М. п. находят применение в различных областях человеческой деятельности, где необходим выбор одного из возможных образов действий, например, при решении многочисленных проблем управления и планирования производственных процессов, в задачах проектирования и перспективного планирования.

Наименование "М. п." связано с тем, что целью решения задач является выбор программы действий.

Математическая формулировка задачи М. п.: минимизировать скалярную функцию φ(x) векторного аргумента х на множестве

X = {x: gi(x) ≥ 0, hi(x) = 0, I = 1, 2, ..., k},

где gi(x) и hi(x) - также скалярные функции; функцию φ(x) называют целевой функцией, или функцией цели, множество X - допустимым множеством, решение х* задачи М. п. - оптимальной точкой (вектором).

В М. п. принято выделять следующие разделы. Линейное программирование: целевая функция φ(x) и ограничения gi(x) и hi (х) линейны; выпуклое программирование: целевая функция и допустимое множество выпуклы; квадратичное программирование: целевая функция квадратична и выпукла, допустимое множество определяется линейными равенствами и неравенствами; дискретное программирование: решение ищется лишь в дискретных, например целочисленных, точках множества X; стохастическое программирование: в отличие от детерминированных задач, здесь входная информация носит элементы неопределённости; например, в стохастических задачах о минимизации линейной функции

при линейных ограничениях

, i = 1, 2, ..., m,

либо все величины cj, aij, bi, либо часть из них случайны.

Задачи перечисленных разделов обладают общим свойством: всякая точка локального минимума является оптимальной точкой. Несколько в стороне находятся так называемые многоэкстремальные задачи - задачи, для которых указанное свойство не выполняется.

В основе теории выпуклого программирования и, в частности, линейного и квадратичного, лежит теорема Куна - Таккера о необходимых и достаточных условиях существования оптимальной точки x*: для того чтобы точка х* была оптимальной, то есть

,

X = {x: gi(x) ≥ 0, i = 1, 2, ..., k},

необходимо и достаточно, чтобы существовала такая точка у* = (у*1, у*2, ..., у*k), чтобы пара точек х*, у* образовывала седло функции Лагранжа

Последнее означает, что

L(x*, y) ≤ L(x*, y*) ≤ L(x, у*)

для любых х и всех у ≥ 0. Если ограничения gi(x) нелинейны, то теорема справедлива при некоторых дополнительных предположениях о допустимом множестве.

Если функции φ(x) и gi(x) дифференцируемы, то следующие соотношения определяют седловую точку

, j = 1, 2, ..., n;

; ; i = 1, 2, ..., k;

, yi . 0, i = 1, 2, ..., k.

Таким образом, задача выпуклого программирования сводится к решению системы уравнений и неравенств.

На основе теоремы Куна - Таккера разработаны различные итерационные методы минимизации, сводящиеся к поиску седловой точки функции Лагранжа.

В М. п. одно из главных мест принадлежит вычислительным методам решения экстремальных задач. Широким классом таких методов являются методы проектирования. Идея этих методов состоит в следующем. В точке xkX выбирается направление спуска sk, то есть одно из направлений, по которому функция φ(x) убывает, и вычисляется xk+1 = p(xk + αksk), где p(xk + αksk) означает проекцию точки xk + αksk на множество X:

,

число αk > 0 выбирается при этом так, чтобы φ(xk +1) < φ(xk). Существуют различные варианты методов проектирования. Наиболее распространённым из них является метод проекции градиента, когда sk = -grad φ(xk). В М. п. доказано, что при определённых условиях на целевую функцию и допустимое множество, последовательность {хk}, построенная методом проекции градиента, такова, что стремится к нулю со скоростью геометрической прогрессии.

Характерной особенностью вычислительной стороны методов решений задач М. п. является то, что применение этих методов неразрывно связано с использованием электронных вычислительных машин, в первую очередь потому, что задачи М. п., связанные с ситуациями управления реальными системами, являются задачами большого объёма, недоступными для ручного счёта.

Важным направлением исследования в М. п. являются проблемы устойчивости. Здесь существ. значение имеет изучение класса устойчивых задач - задач, для которых малые возмущения (погрешности) в исходной информации влекут за собой малые возмущения и в решении. В случае неустойчивых задач большая роль отводится процедуре аппроксимации неустойчивой задачи последовательностью устойчивых задач - так называемому процессу регуляризации.

М. п. как наука сформировалось в 50-70-х годах 20 века. Это обусловлено главным образом развитием электронных вычислительных машин, а следовательно, с возможностью проводить математическую обработку больших потоков информации, и на этой основе решать задачи управления и планирования, где применение математических методов связано в первую очередь с построением математических моделей и соответствующих им экстремальных задач, в том числе задач М. п.

Лит.: Зуховицкий С. И., Авдеева Л. И., Линейное и выпуклое программирование, 2 изд., М., 1967; Хедли Дж., Нелинейное и динамическое программирование, перевод с английского, М., 1967.

В. Г. Карманов.

МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ         
  • Функции оптимизации]]. Симплексные вершины упорядочиваются по их значению, при этом 1 имеет наименьшее (лучшее) значение.
ВЫБОР НАИЛУЧШЕГО РЕШЕНИЯ; ЗАДАЧА НАХОЖДЕНИЯ ЭКСТРЕМУМА ЦЕЛЕВОЙ ФУНКЦИИ В НЕКОТОРОЙ ОБЛАСТИ КОНЕЧНОМЕРНОГО ВЕКТОРА
Математическое программирование; Теория оптимизации; Программирование математическое; Задача оптимизации; Методы оптимизации; Задача условной оптимизации; Задача безусловной оптимизации; Математическая оптимизация
раздел математики, посвященный теории и методам решения задач о нахождении экстремумов функций на множествах, определяемых некоторыми ограничениями (равенствами или неравенствами). Если изучаемая функция линейна (1-й степени) и задана на множестве, заданном линейными равенствами и неравенствами, то соответствующий раздел математического программирования называется линейным программированием. Математическое программирование называется также оптимальным программированием. Следует отличать от программирования на ЭВМ.
Оптимизация (информатика)         
МОДИФИКАЦИЯ СИСТЕМЫ ДЛЯ УЛУЧШЕНИЯ ЕЁ ЭФФЕКТИВНОСТИ
Оптимизация (программирование); Оптимизация ресурсов; Оптимизация (вычислительная техника); Оптимизация кода; Оптимизация программ
Оптимизация — модификация системы для улучшения её эффективности. Система может быть одиночной компьютерной программой, цифровым устройством, набором компьютеров или даже целой сетью.
Белая оптимизация         
  • Рост посещаемости после оптимизации сайта
Естественная оптимизация
Бе́лая оптимиза́ция, или естественная оптимизация, — поисковая оптимизация (подстройка кода, текста и других параметров сайта под алгоритмы поисковых систем с целью поднятия его позиций в выдаче) без применения запрещённых и недобросовестных методов. Это комплекс мер по повышению посещаемости веб-сайта, основанный на анализе поведения целевых посетителей. Естественная оптимизация относится к комплексу мероприятий интернет-маркетинга.

Википедия

Оптимизация

Оптимиза́ция (от лат. optimus — «наилучший») — процесс, имеющий целью направить развитие какого-либо объекта или метода к наиболее лучшему состоянию.

Задача оптимизации сформулирована, если заданы: критерий оптимальности (экономический, технологические требования — выход продукта, содержание примесей в нем и другое); варьирующие параметры (например, температура, давление, величины входных потоков в процессах переработки горного и др. сырья), изменение которых позволяет влиять на эффективность процесса; математическая модель процесса; ограничения, связанные с экономическими и конструктивными условиями, возможностями аппаратуры, требованиями взрывобезопасности и другое.

Что такое ОПТИМИЗАЦИЯ - определение