Оптический телеграф - определение. Что такое Оптический телеграф
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Оптический телеграф - определение

  • Семафорные коды системы братьев Шапп для передачи букв и цифр
  • Демонстрация работы телеграфа
  • Башня телеграфа Шаппа в Литермонте (Германия)
  • Башня оптического телеграфа на Зимнем дворце
  • Семафор братьев Шапп на службе армии Наполеона
Найдено результатов: 168
ОПТИЧЕСКИЙ ТЕЛЕГРАФ         
система визуальной связи с использованием семафорной азбуки. Изобретен в 1793 К. Шаппом. Первая линия оптического телеграфа была построена в 1794 между Парижем и Лиллем (225 км). Передающее устройство оптического телеграфа - совокупность подвижных реек, установленных на башне. Линия оптического телеграфа состояла из цепочки башен, отстоящих друг от друга на расстоянии прямой видимости. В России в 1839-54 действовала самая длинная в мире линия оптического телеграфа между Санкт-Петербургом и Варшавой (1200 км). Во 2-й пол. 19 в. с развитием сети электрической телеграфной связи оптический телеграф потерял свое значение.
Оптический телеграф         

система визуальной передачи сообщений посредством семафорной азбуки. Был распространён в 1-й половине 19 в. Первый О. т. построен в 1794 между Парижем и Лиллем (225 км) французами братьями К. и И. Шапп. Передающее семафорное устройство из подвижных реек устанавливалось на башне. Линия О. т. состояла из цепочки башен, отстоящих друг от друга на расстоянии прямой видимости. Передача сообщения производилась последовательно от башни к башне и поэтому требовала значительного времени. В 1839-54 действовала самая длинная в мире линия О. т. между Петербургом и Варшавой (1200 км); передаваемый сигнал проходил по ней из конца в конец за 15 мин.

Оптический телеграф         
Оптический телеграф — устройство для передачи информации на дальние расстояния при помощи световых сигналов.
ОПТИЧЕСКИЙ ДИСК         
  • Внутреннее устройство привода [[компакт-диск]]ов
  • полиграфии]].<br>
'''''E.''''' Лазерный луч, передающий полученные отражения декодеру
  • музыкального центра]] на 3 диска
  • Сравнение CD, DVD, HDDVD и BD
  • магнитооптических дисков]] с диском внутри
ПЛОСКИЙ, ОБЫЧНО КРУГЛЫЙ ДИСК ДЛЯ ХРАНЕНИЯ ИНФОРМАЦИИ
Оптический носитель
носитель данных в виде пластикового или алюминиевого диска, предназначенный для записи или (и) воспроизведения звука (компакт-диск), изображения (видеодиск), буквенно-цифровой информации и др. при помощи лазерного луча. Плотность записи св. 108 бит/см2.
Оптический диск         
  • Внутреннее устройство привода [[компакт-диск]]ов
  • полиграфии]].<br>
'''''E.''''' Лазерный луч, передающий полученные отражения декодеру
  • музыкального центра]] на 3 диска
  • Сравнение CD, DVD, HDDVD и BD
  • магнитооптических дисков]] с диском внутри
ПЛОСКИЙ, ОБЫЧНО КРУГЛЫЙ ДИСК ДЛЯ ХРАНЕНИЯ ИНФОРМАЦИИ
Оптический носитель
Опти́ческий диск () — собирательное название для носителей информации, выполненных в виде дисков, чтение с которых ведётся с помощью оптического (лазерного) излучения. Диск обычно плоский, его основа сделана из поликарбоната, на который нанесён специальный слой, который и служит для хранения информации. Для считывания информации используется обычно луч лазера, который направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками — «питами» (от  — «ямка», «углубление») на специальном слое, на основании дек
Оптический контраст         
Контра́ст опти́ческий — различимость предмета наблюдения от окружающего его фона. Визуальное восприятие объекта возможно только при наличии контраста между объектом и фоном.
Оптические приборы         
  • Телескоп в здании обсерватории
  • Фотоаппарат «[[Зенит-Автомат]]»
УСТРОЙСТВА, В КОТОРЫХ ОПТИЧЕСКОЕ ИЗЛУЧЕНИЕ ПРЕОБРАЗУЕТСЯ
Оптический прибор; Фокус прибора
Оптические приборы — устройства, в которых оптическое излучение преобразуется (пропускается, отражается, преломляется, поляризуется).
Киевский телеграф (газета)         
  • Оформление последнего печатного номера газеты
ГАЗЕТА
Киевский Телеграфъ; Киевский телеграф; Киевский телеграфъ; Киевский ТелеграфЪ
«Киевский Телеграф» — первая киевская негосударственная газета. Основана Альфредом фон Юнком в июле 1859 года.
ОПТИЧЕСКИЕ ПРИБОРЫ         
  • Телескоп в здании обсерватории
  • Фотоаппарат «[[Зенит-Автомат]]»
УСТРОЙСТВА, В КОТОРЫХ ОПТИЧЕСКОЕ ИЗЛУЧЕНИЕ ПРЕОБРАЗУЕТСЯ
Оптический прибор; Фокус прибора
устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете. При первичной оценке качества прибора рассматриваются лишь основные его характеристики: способность концентрировать излучение - светосила; способность различать соседние детали изображения - разрешающая сила; соотношение размеров предмета и его изображения - увеличение. Для многих приборов определяющей характеристикой оказывается поле зрения - угол, под которым из центра прибора видны крайние точки предмета.
Разрешающая сила. Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.
Увеличение. Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения H?, то увеличение m определяется по формуле m = H?/H. Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы. Важной характеристикой приборов для визуального наблюдения является видимое увеличение М. Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tg. /tg?, где . - угол, под которым наблюдатель видит предмет невооруженным глазом, а . - угол, под которым глаз наблюдателя видит предмет через прибор.
При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик - светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры.
Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.
Микроскопы. Если рассматривать через положительную (собирающую) линзу предмет, расположенный за линзой не дальше ее фокальной точки, то видно увеличенное мнимое изображение предмета. Такая линза представляет собой простейший микроскоп и называется лупой или увеличительным стеклом. Из схемы рис. 1 можно определить размер увеличенного изображения. Когда глаз настроен на параллельный пучок света (изображение предмета находится на неопределенно большом расстоянии, а это означает, что предмет расположен в фокальной плоскости линзы), видимое увеличение M можно определить из соотношения (рис. 1):
M = tg. /tg. = (H/f)/(H/v) = v/f,
где f - фокусное расстояние линзы, v - расстояние наилучшего зрения, т.е. наименьшее расстояние, на котором глаз хорошо видит при нормальной аккомодации. M увеличивается на единицу, когда глаз настраивается так, что мнимое изображение предмета оказывается на расстоянии наилучшего зрения. Способности к аккомодации у всех людей разные, с возрастом они ухудшаются; принято считать 25 см расстоянием наилучшего зрения нормального глаза. В поле зрения одиночной положительной линзы при удалении от ее оси резкость изображения быстро ухудшается из-за поперечных аберраций. Хотя и бывают лупы с увеличением в 20 крат, типичная их кратность от 5 до 10. Увеличение сложного микроскопа, именуемого обычно просто микроскопом, доходит до 2000 крат. См. также МИКРОСКОП; ЭЛЕКТРОННЫЙ МИКРОСКОП.
Телескопы. Телескоп увеличивает видимые размеры удаленных предметов. В схему простейшего телескопа входят две положительные линзы (рис. 2). Лучи от удаленного предмета, параллельные оси телескопа (лучи a и c на рис. 2), собираются в заднем фокусе первой линзы (объектива). Вторая линза (окуляр) удалена от фокальной плоскости объектива на свое фокусное расстояние, и лучи a и c выходят из нее вновь параллельно оси системы. Некоторый луч b, исходящий не из тех точек предмета, откуда пришли лучи a и c, падает под углом . к оси телескопа, проходит через передний фокус объектива и после него идет параллельно оси системы. Окуляр направляет его в свой задний фокус под углом ?. Поскольку расстояние от переднего фокуса объектива до глаза наблюдателя пренебрежимо мало по сравнению с расстоянием до предмета, то из схемы рис. 2 можно получить выражение для видимого увеличения M телескопа:
M = -tg. /tg. = -F/f . (или F/f).
Отрицательный знак показывает, что изображение перевернуто. В астрономических телескопах оно таким и остается; в телескопах для наблюдений за наземными объектами применяют оборачивающую систему, чтобы рассматривать нормальные, а не перевернутые изображения. В оборачивающую систему могут входить дополнительные линзы или, как в биноклях, призмы.
Бинокли. Бинокулярный телескоп, обычно именуемый биноклем, представляет собой компактный прибор для наблюдений обоими глазами одновременно; его увеличение, как правило, от 6 до 10 крат. В биноклях используют пару оборачивающих систем (чаще всего - Порро), в каждую из которых входят две прямоугольные призмы (с основанием под 45?), ориентированные навстречу прямоугольными гранями. Чтобы получить большое увеличение в широком поле зрения, свободном от аберраций объектива, и, следовательно, значительный угол обзора (6-9?), биноклю необходим очень качественный окуляр, более совершенный, чем телескопу с узким углом зрения. В окуляре бинокля предусмотрена фокусировка изображения, причем с коррекцией зрения, - его шкала размечена в диоптриях. Кроме того, в бинокле положение окуляра подстраивается под расстояние между глазами наблюдателя. Обычно бинокли маркируются в соответствии с их увеличением (в кратах) и диаметром объектива (в миллиметрах), например, 8?40 или 7?50.
Оптические прицелы. В качестве оптического прицела можно применить любой телескоп для наземных наблюдений, если в какой-либо плоскости его пространства изображений нанести четкие метки (сетки, марки), отвечающие заданному назначению. Типичное устройство многих военных оптических установок таково, что объектив телескопа открыто смотрит на цель, а окуляр находится в укрытии. Такая схема требует излома оптической оси прицела и применения призм для ее смещения; эти же призмы преобразуют перевернутое изображение в прямое. Системы со смещением оптической оси называются перископическими. Обычно оптический прицел рассчитывается так, что зрачок его выхода удален от последней поверхности окуляра на достаточное расстояние для предохранения глаза наводчика от ударов о край телескопа при отдаче оружия.
Дальномеры. Оптические дальномеры, с помощью которых измеряют расстояния до объектов, бывают двух типов: монокулярные и стереоскопические. Хотя они различаются конструктивными деталями, основная часть оптической схемы у них одинакова и принцип действия один: по известной стороне (базе) и двум известным углам треугольника определяется неизвестная его сторона. Два параллельно ориентированных телескопа, разнесенных на расстояние b (база), строят изображения одного и того же удаленного объекта так, что он кажется наблюдаемым из них в разных направлениях (базой может служить и размер цели). Если с помощью какого-нибудь приемлемого оптического устройства совместить поля изображений обоих телескопов так, чтобы их можно было рассматривать одновременно, окажется, что соответствующие изображения предмета пространственно разнесены. Существуют дальномеры не только с полным наложением полей, но и с половинным: верхняя половина пространства изображений одного телескопа объединяется с нижней половиной пространства изображений другого. В таких приборах с помощью подходящего оптического элемента проводится совмещение пространственно разнесенных изображений и по относительному сдвигу изображений определяется измеряемая величина. Часто в качестве сдвигающего элемента служит призма или комбинация призм. В схеме монокулярного дальномера, показанной на рис. 3, эту функцию исполняет призма P3; она связана со шкалой, проградуированной в измеряемых расстояниях до объекта. Пентапризмы B используются как отражатели света под прямым углом, поскольку такие призмы всегда отклоняют падающий световой пучок на 90?, независимо от точности их установки в горизонтальной плоскости прибора. Изображения, создаваемые двумя телескопами, в стереоскопическом дальномере наблюдатель видит сразу обоими глазами. База такого дальномера позволяет наблюдателю воспринимать положение объекта объемно, на некоторой глубине в пространстве. В каждом телескопе имеется сетка с марками, соответствующими значениям дальности. Наблюдатель видит шкалу расстояний, уходящую в глубь изображаемого пространства, и по ней определяет удаленность объекта.
Осветительные и проекционные приборы. Прожекторы. В оптической схеме прожектора источник света, например кратер дугового электрического разряда, находится в фокусе параболического отражателя. Лучи, исходящие из всех точек дуги, отражаются параболическим зеркалом почти параллельно друг другу. Пучок лучей немного расходится потому, что источником служит не светящаяся точка, а объем конечного размера.
Диаскоп. В оптическую схему этого прибора, предназначенного для просмотра диапозитивов и прозрачных цветных кадров, входят две линзовые системы: конденсор и проекционный объектив. Конденсор равномерно освещает прозрачный оригинал, направляя лучи в проекционный объектив, который строит изображение оригинала на экране (рис. 4). В проекционном объективе предусматриваются фокусировка и замена его линз, что позволяет менять расстояние до экрана и размеры изображения на нем. Оптическая схема кинопроектора такая же.
Спектральные приборы. Основным элементом спектрального прибора может быть дисперсионная призма либо дифракционная решетка. В таком приборе свет сначала коллимируется, т.е. формируется в пучок параллельных лучей, затем разлагается в спектр, и, наконец, изображение входной щели прибора фокусируется на его выходную щель по каждой длине волны спектра.
Спектрометр. В этом более или менее универсальном лабораторном приборе коллимирующая и фокусирующая системы могут поворачиваться относительно центра столика, на котором расположен элемент, разлагающий свет в спектр. На приборе имеются шкалы для отсчетов углов поворота, например дисперсионной призмы, и углов отклонения после нее разных цветовых составляющих спектра. По результатам таких отсчетов измеряются, например, показатели преломления прозрачных твердых тел.
Спектрограф. Так называется прибор, в котором полученный спектр или его часть снимается на фотоматериал. Можно получить спектр от призмы из кварца (диапазон 210-800 нм), стекла (360-2500 нм) или каменной соли (2500-16000 нм). В тех диапазонах спектра, где призмы слабо поглощают свет, изображения спектральных линий в спектрографе получаются яркими. В спектрографах с дифракционными решетками последние выполняют две функции: разлагают излучение в спектр и фокусируют цветовые составляющие на фотоматериал; такие приборы применяют и в ультрафиолетовой области. См. также АСТРОНОМИЯ И АСТРОФИЗИКА; ОПТИКА.
Телеграфная связь         
  • Основные телеграфные линии на 1891 год
  • Упрощённая схема электромеханического телеграфа.<br>
1 — передающая станция;<br>
2 — приемная станция;<br>
3 — передающий ключ;<br>
4 — аккумулятор;<br>
5 — заземление;<br>
6 — электрическая линия;<br>
7 — электромагнит;<br>
8 — пишущее перо;<br>
9 — рулон с бумажной лентой;<br>
10 — валик;<br>
11 — протягивающие ролики;<br>
12 — бумажная лента
  • Флэт-Холме]], май 1897 года
  • Посыльные телеграфной компании ''Postal Telegraph'', США. 1910-е годы
  • Передача кодом Морзе при помощи корабельного оптического телеграфа (лампы Ратьера)
  • Телекс Siemens T100
  • Недействующая линия телеграфной связи, Тульская область, конец 2021 года
  • Телеграфный коммутатор конструкции П. Кошкодаева. Использовался на стационарных узлах Наркомата связи и штабов военных округов. В годы ВОВ широко применялся для оборудования кроссов стационарных узлов связи ([[Военно-исторический музей артиллерии, инженерных войск и войск связи]], Санкт-Петербург)
СРЕДСТВО ПЕРЕДАЧИ СИГНАЛА ПО КАНАЛАМ ЭЛЕКТРОСВЯЗИ
Телекс; Телеграфная связь; Беспроволочный телеграф; Телеграфный аппарат; Беспроводный телеграф; Аппарат телеграфный; Телеграфия; Телеграфист

передача на расстояние буквенно-цифровых сообщений - телеграмм (См. Телеграмма) - с обязательной записью их в пункте приёма; осуществляется электрическими сигналами, передаваемыми по проводам, и (или) радиосигналами; вид электросвязи (См. Электросвязь). Отличительная особенность Т. с. - документальность: сообщение вручается адресату в виде печатного (реже рукописного) текста. Это, а также быстрота передачи сообщений обусловили значительное развитие Т. с., особенно в сфере управления, деловой и коммерческой связи. Кроме передачи телеграмм, ею пользуются для ведения документируемых переговоров, передачи цифровой информации, новостей для прессы, радио и телевидения. Начиная с 50-60-х гг. 20 в. средства Т. с. используются также при передаче данных (См. Передача данных).

Краткая историческая справка. Т. с. - старейший вид электрической связи. Она появилась в 30-х гг. 19 в. Начиная с древнейших времён для передачи сообщений пользовались (помимо почтовой связи (См. Почтовая связь)) только неэлектрическими способами телеграфирования (сигнализации) - световым (см. Оптический телеграф) и звуковым. Их недостатки: низкая скорость передачи информации, зависимость от времени суток и погоды, невозможность соблюдать скрытность передачи. Поэтому неэлектрические способы в 70-е гг. 20 в. применяются крайне редко.

Основы телеграфии (См. Телеграфия) были заложены в России работами П. Л. Шиллинга, который в 1832 создал первый практически пригодный комплекс устройств для электрической Т. с. Разработанная Шиллингом система Т. с. использовалась в Великобритании (с 1837) и Германии. В 1836 Шиллинг построил экспериментальную линию телеграфа, проходившую вокруг здания Адмиралтейства в Петербурге. Затем была организована Т. с. Зимнего дворца с Главным штабом (1841) и с Главным управлением путей сообщений и публичных зданий (1842). В 1843 была построена линия значительно большей протяжённости - между Петербургом и Царским Селом (25 км). Целый ряд удачных конструкций телеграфных аппаратов для этих линий разработал Б. С. Якоби, который в 1839 создал электромагнитный Пишущий телеграфный аппарат, в 1850 - Буквопечатающий телеграфный аппарат. В 1844 в США была введена в эксплуатацию линия Т. с., оборудованная электромеханическими телеграфными аппаратами конструкции С. Морзе (см. Морзе аппарат, Морзе код).

Развитие Т. с. во 2-й половине 19 в. было связано с ростом промышленности и сети железных дорог. Так, в 1860 в России эксплуатировалось около 27 000 км телеграфных линий связи и 160 телеграфных станций (См. Телеграфная станция), а к 1870 эти показатели возросли соответственно до 91 000 и 714. В 1871 была открыта самая длинная в мире телеграфная линия Москва - Владивосток (около 12 тысяч км). Ещё раньше (1854) появились международные, а затем, с прокладкой подводных кабелей связи (См. Подводный кабель связи), и межконтинентальные линии Т. с.

Основная часть расходов в телеграфии приходится на сооружение телеграфных линий. Поэтому исследования в области Т. с. были направлены на увеличение эффективности использования линий. В 1858 русский изобретатель З. Я. Слонимский разработал метод одновременной передачи по одному проводу двух пар телеграфных сообщений (в противоположных направлениях). Разновидность этого метода, получившая название дифференциального дуплекса, широко применяется в Т. с. В 1872 Ж. Бодо изобрёл Многократный телеграфный аппарат, передающий по одному проводу одновременно два (или более) сообщения в одну сторону. Примененный Бодо принцип временного уплотнения линии (см. Линии связи уплотнение) остаётся одним из основных и в современной Т. с. Сам аппарат Бодо имел настолько удачную конструкцию, что с небольшими изменениями эксплуатировался в телеграфии до 50-х гг. 20 в. В 1869 русский изобретатель Г. И. Морозов разработал аппаратуру частотного уплотнения линий связи, при котором несколько сообщений передаются по одной линии сигналами переменного тока различной частоты (идею частотного уплотнения выдвинул французский изобретатель Э. Лаборд в 1860). Этот принцип в дальнейшем был реализован в аппаратуре тонального телеграфирования (См. Тональное телеграфирование), что позволило получать большое количество экономичных телеграфных каналов. В 1880 русский изобретатель Г. Г. Игнатьев предложил способ одновременного телеграфирования и телефонирования по одной линии (см. Подтональное телеграфирование).

Эффективность использования телеграфных линий возрастает также с увеличением скорости передачи сообщений. Так как возможности оператора (телеграфиста) практически ограничены, были разработаны способы автоматической передачи телеграмм, предварительно записанных, например, на перфорированную ленту. Последующее считывание и передача телеграфных сигналов, соответствующих записи на перфоленте, могут выполняться с большой скоростью, что повышает эффективность использования линии или канала Т. с. В 1858-67 Ч. Уитстон (См. Уитстона телеграфный аппарат) предложил конструкции Трансмиттера - устройства для автоматического считывания с перфоленты и Реперфоратора - устройства для записи телеграфной информации на перфоленту. В дальнейшем их стали применять не только для увеличения скорости передачи, но и как запоминающие устройства в различных системах обработки телеграфной информации, устанавливаемых на телеграфных станциях (см. Кодовой коммутации станция).

Большой вклад в развитие телеграфии внесли также сов. учёные и изобретатели - Г. В. Дашкевич, А. Ф. Шорин, П. А. Азбукин, А. Д. Игнатьев, Л. И. Тремль и др.

Организация телеграфной связи в СССР. По назначению и характеру передаваемой информации различают следующие виды Т. с.: связь общего пользования, абонентский телеграф (см. Абонентское телеграфирование), ведомственная Т. с., Факсимильная связь (фототелеграфная связь). Т. с. общего пользования служит для передачи телеграмм, денежных переводов, уведомлений о телефонных переговорах и т. п., поступающих на предприятия связи (городские и сельские отделения связи, районные узлы связи).

При помощи абонентского телеграфа абоненты могут вести документированные переговоры либо одностороннюю передачу сообщений, пользуясь для этого телеграфными аппаратами, установленными непосредственно в помещениях абонентов. Возможна также передача телеграмм в сеть общего пользования и приём их из этой сети. Предприятия связи осуществляют техническое обслуживание абонентских установок, а также предоставляют им временные прямые соединения для передачи информации, взимая за это определённую плату. Абоненты такой Т. с. - крупные предприятия, министерства и ведомства, снабженческо-сбытовые организации и т. п. Разновидность абонентского телеграфа - Телекс, он используется для международной связи.

Ведомственная Т. с. организуется в отраслях народного хозяйства, в которых требуется передавать большое количество документальной информации (на ж. -д. транспорте, в гражданской авиации, метеослужбе и т. д.). Она может быть организована по каналам министерства связи или по собственным линиям и каналам данного ведомства.

Факсимильная связь служит для передачи на расстояние неподвижных изображений, то есть любого иллюстративного, графического и рукописного материала. Этот вид связи не обладает всеми характерными признаками Т. с., но в силу исторически сложившихся условий его относят к телеграфии. Факсимильная связь используется для передачи фототелеграмм, полос центральных газет, картографических материалов с нанесённой на них метеорологической обстановкой и т. д.

По способу организации передачи различают Т. с. симплексную и дуплексную. Симплексная Т. с. между двумя телеграфными станциями (или абонентами) позволяет передавать сообщения в обе стороны поочерёдно. При этом для передачи и приёма используется один и тот же телеграфный аппарат. При дуплексной связи информация может направляться в обе стороны одновременно, для чего на каждой станции устанавливают два аппарата - для передачи и приёма - или один аппарат с электрически разделёнными цепями приёма и передачи.

Техника телеграфной связи. Любой буквенно-цифровой текст является дискретным: независимо от содержания его можно выразить конечным, сравнительно небольшим набором символов - букв, цифр, знаков препинания. Поэтому составные элементы систем Т. с., в частности телеграфные аппараты, рассчитывают на передачу определённого, заранее заданного количества отличающихся друг от друга сочетаний элементарных сигналов. Каждому такому сочетанию, называемому кодовой комбинацией, однозначно соответствует какая-либо буква или цифра (см. Код телеграфный). В Т. с. применяются двоичные сигналы, то есть сигналы, которые могут принимать одно из двух возможных значений. Это даёт максимальную защищенность сигналов от действия помех в линии или канале, а также обеспечивает простоту реализации устройств Т. с.

Передача кодовых комбинаций может осуществляться двоичными сигналами различных видов. На рис. 1 показана форма наиболее употребительных двоичных сигналов. Сигналы постоянного тока (одно- и двухполюсные) применяют при передаче сообщений на сравнительно короткие расстояния (как правило, не превышающие 300-400 км) по кабельным и воздушным линиям (физическим цепям). На магистральных линиях передачу ведут двоичными сигналами переменного тока, обычно модулированными по частоте, а в качестве линий используют преимущественно телефонные каналы. Это позволяет получать в одном телефонном канале до 44 независимых каналов Т. с. (см. Многоканальная связь). Для этого применяется аппаратура тонального телеграфирования.

В 70-х гг. 20 в. основной принцип Т. с. - принцип коммутации каналов. Для передачи телеграммы между двумя телеграфными станциями устанавливается временное прямое соединение, и телеграфные сигналы передаются непосредственно из пункта подачи телеграммы в пункт назначения. После окончания передачи по сигналу отбоя соединение разрывается, а входящие в него каналы используются для др. соединений. Оконечные абонентские установки, кроме телеграфных аппаратов, оборудуются устройствами вызова и отбоя, имеющими номеронабиратели телефонного типа. Коммутационное оборудование, осуществляющее соединение абонентов, обычно располагается на телеграфном узле, находящемся в областном или краевом центре. Здесь же устанавливается аппаратура тонального телеграфирования.

Оконечные станции с телеграфными аппаратами, коммутационное оборудование и каналы Т. с., служащие для передачи информации, образуют телеграфную сеть (См. Телеграфная сеть). Структурная схема организации Т. с. в сети, построенной по принципу коммутации каналов, со всеми входящими в неё элементами приведена на рис. 2. На схеме показано соединение двух оконечных станций через узловые станции А и Б. В зависимости от расположения оконечных станций количество узловых станций, участвующих в установлении соединения, составляет от 1 до 6.

В ряде случаев в телеграфной сети может не быть устройств коммутации, то есть в ней используются постоянно закрепленные каналы, соединяющие два предприятия связи. В частности, преимущественно по закрепленным каналам осуществляется передача информации при радиотелеграфной связи (См. Радиотелеграфная связь) и факсимильной связи.

Коммутируемые сети современных Т. с. экономичнее, чем сети с закрепленными каналами; они обеспечивают большую гибкость и возможность соединения любых абонентов. Поэтому автоматизированные коммутируемые сети Т. с. наиболее распространены и являются одной из составных частей создаваемой в СССР Единой автоматизированной системы связи (См. Единая автоматизированная система связи)(ЕАСС).

Развитие техники Т. с. идёт по линии дальнейшей автоматизации процессов передачи, приёма и обработки информации, совершенствования телеграфных аппаратов, каналообразующей и коммутационной аппаратуры. Весьма перспективно применение ЭВМ для обработки телеграмм в телеграфных узлах связи (См. Узел связи). Разработаны и выпущены первые образцы электронномеханических телеграфных аппаратов, имеющих более высокие эксплуатационные показатели, чем электромеханические. В каналообразующей аппаратуре тонального телеграфирования применяются методы передачи и модуляции, позволяющие получать большее количество помехоустойчивых телеграфных каналов.

Технико-эксплуатационные показатели телеграфной связи. Все количественные показатели Т. с. как отрасли народного хозяйства в той или иной степени базируются на информационной ценности обрабатываемых телеграмм. Эти показатели подразделяются на технические и эксплуатационные. К числу технических показателей относятся: скорость телеграфирования, верность передачи, коэффициент Отказов.

Скорость телеграфирования (скорость передачи) измеряется количеством элементарных сигналов передаваемых в сек.

--------------------------------------------------------------------------------

| V ( | W | Q (слов в ч) |

| бод) | (знаков |-------------------------------------------------------|

| | в мин) | Теоретическая | эксплуатационная |

|-------------------------------------------------------------------------------|

| 50 | 400 | 2823 | 1600 |

| 100 | 800 | 5645 | 3200 |

| 200 | 1600 | 10 558 | 6300 |

--------------------------------------------------------------------------------

Количество знаков, передаваемых в мин, вычисляется по формуле: , где V - скорость передачи в бод; n - количество элементарных сигналов, приходящихся на 1 знак. Количество слов, передаваемых в ч, определяется по формуле:

QT

где m - средняя длина слова (равная 5 знакам). Величина QT - теоретическая, расчётная. Величины V, W и QT для случая передачи телеграфным кодом № 2 приведены в табл. Там же указана эксплуатационная норма QЭ, отличающаяся от теоретической QT на величину потерь времени оператора на выполнение второстепенных функций при передаче и приёме телеграмм, а также учитывающая его квалификацию.

Верность передачи представляет собой отношение количества знаков, принятых (за сеанс измерений верности) с ошибками, к общему количеству переданных знаков. Эта величина называется также коэффициентом ошибок. На коэффициент ошибок Международным консультативным комитетом по телефонии и телеграфии (МККТТ) рекомендуется норма 3․10-5 (в среднем не более трёх ошибок на 100 000 переданных знаков). В СССР в связи с большими расстояниями действует др. норма - 10-4(не более одной ошибки на 10 000 переданных знаков) при длине телеграфной линии 2500 км.

Коэффициент отказов показывает, как часто оператор, устанавливающий в коммутируемой сети соединение для передачи телеграммы, получает сигнал "занято". Этот сигнал появляется при занятости вызываемой оконечной станции или коммутационных приборов на промежуточных телеграфных узлах. Коэффициент отказов нормируется для периода (часа) наибольшей нагрузки и выражается как процентное отношение количества отказов в соединении к общему количеству вызовов. Норма на коэффициенте отказов 17\% для связи через 6 промежуточных узлов.

К группе эксплуатационных показателей Т. с. относят объём продукции, качество передачи, время прохождения телеграмм и производительность труда работников телеграфии. Объём продукции измеряется количеством телеграмм, поступающих на предприятие связи для передачи и доставки, количеством переговоров по сети абонентского телеграфа, числом телеграфных каналов, сдаваемых в аренду для организации ведомственных сетей (см. также Обмен телеграфный). Качество передачи характеризуется точностью соответствия текста телеграммы, доставленной адресату, тексту подлинника, сданного отправителем. Время прохождения телеграмм регламентируется на всём пути от отправителя до получателя либо только на отдельных звеньях телеграфной сети. При этом учитываются телеграммы, задержанные при обработке сверх положенного контрольного срока. Производительность труда определяется как количество телеграмм, приходящихся в среднем на одного работника Т. с. в месяц или год. Эта величина может выражаться также в денежных единицах стоимости передачи телеграмм.

В СССР основные нормативы, касающиеся организации и проектирования, а также эксплуатации устройств и аппаратуры Т. с., приводятся в Телеграфных правилах, введённых в действие министерством связи в 1969. Правила определяют порядок приёма, обработки, оформления и доставки телеграмм, очерёдность передачи, обязанности персонала, виды услуг и т. д. Особый раздел правил посвящен техническим показателям и нормам Т. с., обязательным к выполнению на всей территории страны. Международно-правовой режим Т. с. регулируется документами Международного союза электросвязи (См. Международный союз электросвязи) и соглашениями между администрациями связи отдельных стран. Имеются также Рекомендации МККТТ, в которых устанавливаются нормы и правила построения устройств и аппаратуры Т. с. (вид кода, скорость телеграфирования, служебные сигналы и т. п.). Рекомендации направлены главным образом на обеспечение совместной работы отдельных сетей и средств Т. с. при обмене международными телеграммами.

Состояние телеграфной связи за рубежом. Структура Т. с. в развитых капиталистических государствах в основном такая же, как и в СССР. В ряде стран (Швейцария, ФРГ, США) создаются полностью автоматизированные телеграфные сети, в которых используются элементы и устройства вычислительной техники. Отличительная особенность Т. с. этих стран - большое количество международных телеграмм, для передачи которых используется международная коммутируемая телеграфная сеть Телекс. В странах СЭВ действует международная телеграфная сеть Гентекс, телеграфные узлы которой расположены в столицах этих стран.

Лит.: Яроцкий А. В., Основные этапы развития телеграфии, М.-Л., 1963; Материалы по истории связи в России, Л., 1966; Наумов П. А., Коган В. С., Основы телеграфии, 2 изд., М., 1969; Основы телеграфии и телеграфные станции, М., 1970; Борцов Д. В., Сухоруков Н. С., Телеграфная связь на железнодорожном транспорте, 2 изд., М., 1971; Передача дискретной информации и телеграфия, 2 изд., М., 1974; Копничев Л. Н., Коган В. С., Телеграфные аппараты и аппаратура передачи данных, М., 1975.

Л. Н. Копничев.

Рис. 1. Виды двоичных телеграфных сигналов: а - однополюсные сигналы постоянного тока; б - двухполюсные сигналы постоянного тока; в - частотно-модулированные сигналы переменного тока; u - напряжение; t - время; f1 и f2 - значения частот двоичных сигналов переменного тока.

Рис. 2. Схема организации телеграфной связи: ТА - телеграфный аппарат; ВП - вызывной прибор с номеронабирателем; А и Б - узловые телеграфные станции с устройствами коммутации.

Википедия

Оптический телеграф

Оптический телеграф — устройство для передачи информации на дальние расстояния при помощи световых сигналов.

Что такое ОПТИЧЕСКИЙ ТЕЛЕГРАФ - определение