Ориентированные ядра - определение. Что такое Ориентированные ядра
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Ориентированные ядра - определение

Агентно-ориентированные модели; Агент-ориентированные модели
Найдено результатов: 53
ОРИЕНТИРОВАННЫЕ ЯДРА      
(поляризованные ядра) , атомные ядра, спины которых ориентированы не хаотично, а имеют преимущественную направленность в пространстве.
Ориентированные ядра      

совокупность атомных ядер с упорядоченностью в пространственной ориентации спинов (спиновой упорядоченностью). Проекции m спи́на I ядер на заданную ось в пространстве могут принимать 2I + 1 дискретных значений от m = -I до m = +I с интервалом, равным 1. Спиновую упорядоченность относительно этой оси характеризует набор вероятностей Wm для всех возможных значений m. Для неупорядоченной совокупности ядер все Wm =1/(2I + 1). Нарушение этого условия означает наличие спиновой упорядоченности.

При описании спиновой упорядоченности вместо Wm часто пользуются эквивалентным набором т. н. параметров ориентации f k (k = 1,..., 2I). Они представляют собой полиномы от средних значений степеней m.

,

например: ; .

Величина f 1 называется поляризацией ядер, а f 2 - выстроенностью ядер. Они имеют сравнительно простой смысл: поляризация f 1 характеризует преимущественную ориентацию спинов ядер параллельно данному направлению на некоторой оси, а выстроенность f 2 - параллельно и антипараллельно этой оси, т. е. симметричную относительно плоскости, перпендикулярной оси. Введение параметров ориентации f k связано, в частности, с тем, что именно f k непосредственно входят в выражение для энергии взаимодействия ядер с электромагнитным полем (это взаимодействие используется для создания О. я., см. ниже). Так, f 1 определяет энергию взаимодействия магнитного момента ядра с магнитным полем, a f 2 - энергию взаимодействия квадрупольного момента ядра (См. Квалрупольный момент ядра) c неоднородным электрическим полем.

В веществах, встречающихся в природе, атомные ядра не ориентированы. Для получения О. я. разработаны специальные методы, основанные на наличии у ядер дипольных магнитных и квадрупольных электрических моментов, направленных вдоль спинов ядер. Эти методы разделяются на статические и динамические. В статических методах используется ориентирующее взаимодействие магнитного поля с магнитными дипольными моментами ядер (ориентация тем сильнее, чем больше поле и магнитный момент ядра) и взаимодействие ядерного квадрупольного момента с неоднородным электрическим полем. В случае магнитного поля появляется поляризация, а в случае электрического - выстроенность (квадруполизация).

Тепловое движение атомных ядер подавляет ориентирующее действие полей. Магнитные и электрические моменты ядер столь малы, что даже в предельно достижимых полях при комнатных температурах (300 К) спиновая упорядоченность ядер, находящихся в тепловом равновесии с веществом, оказывается ничтожно малой. Поэтому для получения О. я. статическими методами наряду с достаточно сильными полями необходимо охлаждение вещества, содержащего ядра, до сверхнизких температур (10-2 К и ниже). Например, поляризация ядер с магнитным моментом, равным 1 ядерному магнетону, и спином 1/2 в магнитном поле Н = 105 э при температуре 10-2 К составляет 0,35. Это означает, что около 70\% ядер имеют спин, ориентированный в заданном направлении.

В связи с трудностями, связанными с осуществлением таких температур и полей, для получения О. я. широко используются "внутренние" поля, создаваемые на ядрах внутриатомными электронами (см. Кристаллическое поле). Напряжённости этих полей значительно превосходят то, чем пока располагает экспериментальная техника создания "внешних" полей. Если внутренние поля ориентировать в пространстве одинаково, то совокупность ядер окажется в очень сильном поле. Внутренние магнитные поля создаются на ядрах парамагнитных атомов (см. Парамагнетизм) и достигают 106-107 э. Внутренние поля Ориентированные ядра 105-106 э возникают также на ядрах диамагнитных атомов (см. Диамагнетизм) при растворении небольших количеств диамагнитного вещества (Ориентированные ядра1\%) в ферромагнетиках (См. Ферромагнетики). Т. к. магнитные моменты электронов превосходят ядерные магнитные моменты более чем в 103 раз, то их, а следовательно, и создаваемые ими внутренние магнитные поля удаётся ориентировать при значительно меньших внешних полях и более высоких температурах.

Неоднородные электрические поля, достаточные для выстраивания ядер, удаётся создать, используя внутренние электрические поля в некоторых веществах с ковалентными химическими связями (См. Химическая связь), когда электронное облако, окружающее ядро, резко асимметрично. В этом случае охлаждаемое вещество, содержащее выстраиваемые ядра, берётся в виде монокристалла.

В динамических методах тепловое равновесие системы ядерных спинов искусственно нарушается таким образом, что возникает спиновая упорядоченность. В большинстве динамических методов во внешнем магнитном поле (статически) ориентируются электронные спины. Далее с помощью методов электронного парамагнитного резонанса (См. Электронный парамагнитный резонанс) (ЭПР) и ядерного магнитного резонанса (См. Ядерный магнитный резонанс) (ЯМР) ориентация электронных спинов передаётся системе ядерных спинов. Достоинством динамических методов является отсутствие необходимости в очень сильных полях и сверхнизких температурах. Недостаток состоит в том, что круг ядер, ориентируемых этими методами, сравнительно узок.

О. я. используются в ядерной физике для исследований спиновой зависимости ядерных сил и для определения спинов, магнитных моментов и чётностей возбуждённых состояний атомных ядер. Эксперименты с β-радиоактивным О. я. (см. Бета-распад) дали возможность установить одно из фундаментальных свойств элементарных частиц (См. Элементарные частицы) - несохранение чётности в слабых взаимодействиях (См. Слабые взаимодействия). В физике твёрдого тела с помощью О. я. исследуют внутрикристаллические поля.

Лит.: Хуцишвили Г. Р., Ориентированные ядра, "Успехи физических наук", 1954, т. 53, в. 3; Методы определения основных характеристик атомных ядер и элементарных частиц, пер. с англ., М., 1966; Джеффрис К., Динамическая ориентация ядер, пер. с англ., М., 1965.

В. П. Алфименков.

Ядерная физика         
РАЗДЕЛ ФИЗИКИ, ИЗУЧАЮЩИЙ СТРУКТУРУ И СВОЙСТВА АТОМНЫХ ЯДЕР И ЯДЕРНЫЕ РЕАКЦИИ
Физика ядра; Физика атомного ядра; Физик-ядерщик; ТЯФ
Я́дерная фи́зика — раздел физики, изучающий структуру и свойства атомных ядер, а также их столкновения (ядерные реакции).
ЯДЕРНАЯ ФИЗИКА         
РАЗДЕЛ ФИЗИКИ, ИЗУЧАЮЩИЙ СТРУКТУРУ И СВОЙСТВА АТОМНЫХ ЯДЕР И ЯДЕРНЫЕ РЕАКЦИИ
Физика ядра; Физика атомного ядра; Физик-ядерщик; ТЯФ
раздел физики, охватывающий изучение структуры и свойств атомных ядер и их превращений - процессов радиактивного распада и ядерных реакций.
Ядерная физика         
РАЗДЕЛ ФИЗИКИ, ИЗУЧАЮЩИЙ СТРУКТУРУ И СВОЙСТВА АТОМНЫХ ЯДЕР И ЯДЕРНЫЕ РЕАКЦИИ
Физика ядра; Физика атомного ядра; Физик-ядерщик; ТЯФ
I Я́дерная фи́зика

раздел физики, посвященный изучению структуры атомного ядра, процессов радиоактивного распада и механизма ядерных реакций (См. Ядерные реакции). Придавая этому термину более общий смысл, к Я. ф. часто относят также физику элементарных частиц (См. Элементарные частицы). Иногда разделами Я. ф. продолжают считать направления исследований, ставшие самостоятельными ветвями техники, например ускорительную технику (см. Ускорители заряженных частиц), ядерную энергетику (См. Ядерная энергетика). Исторически Я. ф. возникла ещё до установления факта существования ядра атомного (См. Ядро атомное). Возраст Я. ф. можно исчислять со времени открытия радиоактивности (См. Радиоактивность).

Канонизированного деления современной Я. ф. на более узкие области и направления не существует. Обычно различают Я. ф. низких, промежуточных и высоких энергий. К Я. ф. низких энергий относят проблемы строения ядра, изучение радиоактивного распада ядер, а также исследования ядерных реакций, вызываемых частицами с энергией до 200 Мэв. Энергии от 200 Мэв до 1 Гэв называются промежуточными, а свыше 1 Гэв - высокими. Это разграничение в значительной мере условно (особенно деление на промежуточные и высокие энергии) и сложилось в соответствии с историей развития ускорительной техники. В современной Я. ф. структуру ядра исследуют с помощью частиц высоких энергий, а фундаментальные свойства элементарных частиц устанавливают в результате исследования радиоактивного распада ядер.

Обширной составной частью Я. ф. низких энергии является нейтронная физика, охватывающая исследования взаимодействия медленных нейтронов с веществом и ядерные реакции под действием нейтронов (см. Нейтронная спектроскопия). Молодой областью Я. ф. является изучение ядерных реакций под действием многозарядных ионов. Эти реакции используются как для поиска новых тяжёлых ядер (см. Трансурановые элементы), так и для изучения механизма взаимодействия сложных ядер друг с другом. Отдельное направление Я. ф. - изучение взаимодействия ядер с электронами и фотонами (см. Фотоядерные реакции). Все эти разделы Я. ф. тесно переплетаются друг с другом и связаны общими целями.

В Я. ф. (как и во всей современной физике) существует резкое разделение эксперимента и теории. Арсенал экспериментальных средств Я. ф. разнообразен и технически сложен. Его основу составляют ускорители заряженных частиц (от электронов до многозарядных ионов), ядерные реакторы (См. Ядерный реактор), служащие мощными источниками нейтронов, и Детекторы ядерных излучений, регистрирующие продукты ядерных реакций. Для современного ядерного эксперимента характерны большие интенсивности потоков ускоренных заряженных частиц или нейтронов, позволяющие исследовать редкие ядерные процессы и явления, и одновременная регистрация нескольких частиц, испускаемых в одном акте ядерного столкновения. Множество данных, получаемых в одном опыте, требует использования ЭВМ, сопрягаемых непосредственно с регистрирующей аппаратурой (см. Ядерная спектроскопия). Сложность и трудоёмкость эксперимента приводит к тому, что его выполнение часто оказывается посильным лишь большим коллективам специалистов.

Для теоретической Я. ф. характерна необходимость использования аппаратов разнообразных разделов теоретической физики: классической электродинамики (См. Электродинамика), теории сплошных сред, квантовой механики (См. Квантовая механика), статистической физики (См. Статистическая физика), квантовой теории поля (См. Квантовая теория поля). Центральная проблема теоретической Я. ф. - квантовая задача о движении многих тел, сильно взаимодействующих друг с другом. Теорией ядра и элементарных частиц были рождены и развиты новые направления теоретической физики (например, в теории сверхпроводимости (См. Сверхпроводимость), в теории химической реакции), получившие впоследствии применение в других областях физики и положившие начало новым математическим исследованиям (обратная задача теории рассеяния и её применения к решению нелинейных уравнений в частных производных) и др. Развитие теоретических и экспериментальных ядерных исследований взаимозависимо и тематически связано. Стоящие перед Я. ф. проблемы слишком сложны и лишь в немногих случаях могут быть решены чисто теоретическим или эмпирическим путём. Я. ф. оказала большое влияние на развитие ряда других областей физики (в частности, астрофизики и физики твёрдого тела) и других наук (химии, биологии, биофизики).

Прикладное значение Я. ф. в жизни современного общества огромно, её практические приложения фантастически разнообразны - от ядерного оружия (См. Ядерное оружие) и ядерной энергетики до диагностики и терапии в медицине (см. Радиология). Вместе с тем (и это является специфической особенностью Я. ф.) она остаётся той фундаментальной наукой, от прогресса которой можно ожидать выяснения глубоких свойств строения материи и открытия новых общих законов природы.

Лит. см. при ст. Ядро атомное.

И. С. Шапиро.

II Я́дерная фи́зика ("Я́дерная фи́зика",)

научный журнал Отделения ядерной физики АН СССР. Основан в 1965, издаётся в Москве. Выходит 2 тома в год по 6 выпусков в каждом. Публикует оригинальные статьи, рассчитанные на специалистов по физике атомного ядра, физике элементарных частиц, физике частиц высоких энергий, физике космических лучей. Тираж (1978) около 1000 экз. Переиздаётся в США на английском языке (с 1965).

Базальные ядра         
База́льные я́дра (также база́льные га́нглии, ) — несколько скоплений серого вещества, расположенных в белом веществе латеральнее таламуса на уровне основания полушарий конечного мозга. Базальные ядра входят в состав переднего мозга, расположенного на границе между лобными долями и над стволом мозга.
Кулоновский барьер         
БАРЬЕР МЕШАЮЩИЙ ПРОТЕКАНИЮ ТЕРМОЯДЕРНОГО СИНТЕЗА В ИССКУСТВЕННЫХ УСЛОВИЯХ
Кулоновский барьер ядра
Куло́новский барье́р — потенциальный барьер, который необходимо преодолеть атомным ядрам (которые заряжены положительно) для того, чтобы сблизиться друг с другом для возникновения притяжения, вызванного короткодействующим сильным взаимодействием нуклонов (ядерными силами). Кулоновский барьер есть следствие того, что, согласно закону Кулона, одноимённо заряженные тела отталкиваются. На малых расстояниях (порядка 1 фм) ядерные силы между двумя протонами сильнее кулоновских сил, расталкивающих одноимённо заряженные частицы; однако ядерные силы убыв�
Модуль ядра         
Модуль ядра, загружаемый модуль ядра () — объектный файл, содержащий код, расширяющий функциональность запущенного или так называемого базового ядра ОС. Модули ядра используются, чтобы добавить поддержку нового оборудования или файловых систем или для добавления новых системных вызовов.
Перенос ядер соматических клеток         
В терапевтическом клонировании используется процесс, известный как пересадка ядер соматических клеток, (замена ядра клетки, исследовательское клонирование и клонирование эмбриона), состоящий в изъятии яйцеклетки (ооцита) из которой было удалено ядро, и замена этого ядра ДНК другого организма. После многих митотических делений культуры (митозов культуры), данная клетка образует бластоцисту (раннюю стадию эмбриона состоящую из приблизительно 100 клеток) с ДНК почти идентичным первичному организму.
Теория оболочечного строения ядра         
Тео́рия оболо́чечного строе́ния ядра́ — одна из ядерно-физических моделей, объясняющих структуру атомного ядра, аналогично теории оболочечного строения атома. В рамках этой модели протоны и нейтроны заполняют оболочки атомного ядра, и, как только оболочка заполнена, значительно повышается стабильность ядра.

Википедия

Агентное моделирование

Агентное моделирование (англ. agent-based model (ABM)) — метод имитационного моделирования, исследующий поведение децентрализованных агентов и то, как такое поведение определяет поведение всей системы в целом. В отличие от системной динамики, аналитик определяет поведение агентов на индивидуальном уровне, а глобальное поведение возникает как результат деятельности множества агентов (моделирование «снизу вверх»).

Агентное моделирование включает в себя клеточные автоматы, элементы теории игр, сложных систем, мультиагентных систем и эволюционного программирования, методы Монте-Карло, использует случайные числа.

Что такое ОРИЕНТИРОВАННЫЕ ЯДРА - определение