Пирометрия - определение. Что такое Пирометрия
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Пирометрия - определение

Найдено результатов: 17
пирометрия      
ПИРОМ'ЕТРИЯ, пирометрии, мн. нет, ·жен. (физ.). Учение о способах измерения высоких температур.
Пирометрия      
(от греч. pýr - îãîíü è... ìåòðèÿ (Ñì. ...метрия)

группа методов измерения температуры. Раньше к П. относили все методы измерения температуры, превышающей предельную для ртутных Термометров; с 60-х гг. 20 в. к П. всё чаще относят лишь оптические методы, в частности основанные на применении пирометров (См. Пирометры), и не включают в неё методы, в которых применяются термометры сопротивления (См. Термометр сопротивления), термоэлектрические термометры с Термопарами, и ряд др. методов (см. Термометрия). Почти все оптические методы основаны на измерении интенсивности теплового излучения (См. Тепловое излучение) (иногда - поглощения) тел. Интенсивность теплового излучения сильно зависит от температуры Т тел и очень резко убывает с её уменьшением. Поэтому методы П. применяют для измерения относительно высоких температур (например, серийным радиационным пирометром от 200 °С и выше). При Т ≤ 1000 °С методы П. играют в целом второстепенную роль, но при Т > 1000 °С они становятся главными, а при Т > 3000 °С - практически единственными методами измерения Т. Методами П. в промышленных и лабораторных условиях определяют температуру в печах и др. нагревательных установках, температуру расплавленных металлов и изделий из них (проката и т.п.), температуру пламён, нагретых газов, плазмы. Методы П. не требуют контакта датчика измерительного прибора с телом, температура которого измеряется, и поэтому могут применяться для измерения очень высоких температур. Основное условие применимости методов П.- излучение тела должно быть чисто тепловым, т. е. оно должно подчиняться Кирхгофа закону излучения (См. Кирхгофа закон излучения). Твёрдые тела и жидкости при высоких температурах обычно удовлетворяют этому требованию, в случае же газов и плазмы необходима специальная проверка для каждого нового объекта или новых физических условий. Так, излучение однородного слоя плазмы подчиняется закону Кирхгофа, если распределения молекул, атомов, ионов и электронов плазмы по скоростям соответствуют Максвелла распределению (См. Максвелла распределение), заселённости возбуждённых уровней энергии соответствуют закону Больцмана (см. Больцмана статистика), а Диссоциация и Ионизация определяются: Действующих масс законом, причём во все эти соотношения входит одно и то же значение Т. Такое состояние плазмы называется термически равновесным. Интенсивность излучения однородной равновесной плазмы и в линейчатом, и в сплошном спектрах однозначно определяется её химическим составом, давлением, атомными константами и равновесной температурой. Если плазма неоднородна, то даже при повсеместном выполнении условий термического равновесия её излучение не подчиняется закону Кирхгофа. В этом случае методы П. применимы лишь к источникам света, обладающим осевой симметрией.

Измерения наиболее просты для твёрдых тел и жидкостей, спектр излучения которых чисто сплошной. В этом случае измерения температуры осуществляют пирометрами, действие которых основано на законах излучения абсолютно чёрного тела (См. Абсолютно чёрное тело). Обычно поверхности исследуемого тела придают форму полости, чтобы коэффициент поглощения был близок к единице (оптические свойства такого тела близки к свойствам абсолютно чёрного тела).

Наиболее универсальны методы П., основанные на измерении интенсивностей спектральных линий. Они обеспечивают максимальную точность, если известны абсолютная вероятность соответствующего перехода и концентрация атомов данного сорта. Если же концентрация атомов не известна с достаточной точностью, применяют метод относительных интенсивностей, в котором температуру вычисляют по отношению интенсивностей двух (или нескольких) спектральных линий. Варианты этих методов разработаны для измерения температуры как оптически тонких слоев плазмы, так и оптически толстых.

В др. группе методов П. температура определяется по форме или ширине спектральных линий, которые зависят от температуры либо непосредственно благодаря Доплера эффекту, либо косвенно - благодаря Штарка эффекту и зависимости плотности плазмы от температуры. В некоторых методах температура определяется по абсолютной или относительной интенсивности сплошного спектра ("континуума"). Особое значение имеют методы определения температуры по спектру рассеянного плазмой излучения Лазера, позволяющие исследовать неоднородную плазму. К недостаткам методов П. следует отнести трудоёмкость измерений, сложность интерпретации результатов, невысокую точность (например, погрешности измерений температуры плазмы в лучших случаях оказываются не ниже 3-10\%).

Применение методов П. для исследования неравновесной плазмы даёт ценную информацию о её состоянии, хотя понятие температуры в этом случае неприменимо.

Лит.: Оптическая пирометрия плазмы. Сб. статей, [пер. с англ.], под ред. Н. Н. Соболева, М., 1960; Грим Г., Спектроскопия плазмы, пер. с англ., М., 1969; Методы исследования плазмы (Спектроскопия, лазеры, зонды), пер. с англ., под ред. С. Ю. Лукьянова, М., 1971.

В. Н. Колесников.

ПИРОМЕТРИЯ      
и, мн. нет, ж., физ.
Совокупность методов измерения высоких температур с применением пирометров.
пирометрия      
ж.
Способ измерения высоких температур при помощи специальных приборов.
Пирометры         
  • Стационарный пирометр инфракрасного излучения
  • Оптический пирометр
(от греч. pýr - огонь и ...метр

приборы для измерения температуры непрозрачных тел по их излучению в оптической диапазоне спектра. Тело, температуру которого определяют при помощи П., должно находиться в тепловом равновесии и обладать коэффициентом поглощения, близким к единице (см. Пирометрия). Распространены яркостные, цветовые и радиационные П. Основным типом является яркостный П., обеспечивающий наибольшую точность измерений температуры в диапазоне 103-104 К. В простейшем визуальном яркостном П. с исчезающей нитью (рис. 1) объектив фокусирует изображение исследуемого тела на плоскость, в которой расположена нить (ленточка) эталонной лампы накаливания. Через окуляр и красный фильтр, позволяющий выделять узкую спектральную область около длины волны λэ = 0,65 мкм, нить рассматривают на фоне изображения тела и, изменяя ток накала нити, добиваются выравнивания яркостей нити и тела (нить в этот момент становится неразличимой). Шкала прибора, регистрирующего ток накала, прокалибрована обычно в °С или К, и в момент выравнивания яркостей прибор показывает так называемую яркостную температуру (См. Яркостная температура) (Tb) тела. Истинная температура тела Т определяется на основе законов теплового излучения (См. Тепловое излучение) Кирхгофа и Планка по формуле:

Т = TbC2/(C2 + λ эТь Inαλ,Τ), (1)

где C2 = 0,014388 м ․К, αλ, T - коэффициент поглощения тела, λ э - эффективная длина волны П.

Точность результата в первую очередь зависит от строгости выполнения условий пирометрия, измерений (αλ, T ≈ 1 и др.). В связи с этим наблюдаемой поверхности придают форму полости. Основная инструментальная погрешность обусловлена нестабильностью температурной лампы. Заметную погрешность могут вносить также индивидуальные особенности глаза наблюдателя. У фотоэлектрических П. (рис. 2) этот вид погрешности отсутствует. Погрешность образцовых лабораторных фотоэлектрических П. не превышает сотых долей градуса при Т = 1000 °С. Промышленные серийные фотоэлектрические П. обладают на порядок большей погрешностью, визуальные - ещё на порядок большей. Образцовые яркостные П. приняты в качестве основных интерполяционных приборов, определяющих Международную практическую температурную шкалу (См. Международная практическая температурная шкала) (МПТШ-68) при температурах выше точки затвердевания золота (1064,43 °С).

Для измерения температуры тел, у которых α ≈ const в оптическом диапазоне спектра, применяют цветовые П. Этими П. определяют отношение яркостей обычно в синей и красной областях спектра b11, T)/b22, T) (например, для длин волн λ1 = 0,48 мкм и λ2 = 0,60 мкм). Шкала прибора прокалибрована в °С и показывает цветовую температуру (См. Цветовая температура) Tc. Истинная температура Т тела определяется по формуле

.(2)

Цветовые П. менее точны, менее чувствительны и более сложны, чем яркостные; применяются в том же диапазоне температур.

Наиболее чувствительны (но и наименее точны) радиационные П., или П. суммарного излучения, регистрирующие полное излучение тела. Действие их основано на Стефана - Больцмана законе излучения (См. Стефана - Больцмана закон излучения) и Кирхгофа законе излучения (См. Кирхгофа закон излучения). Объектив радиационных П. фокусирует наблюдаемое излучение на приёмник (обычно термостолбик или болометр), сигнал которого регистрируется прибором, прокалиброванным по излучению абсолютно чёрного тела и показывающим радиационную температуру (См. Радиационная температура) Tr. Истинная температура определяется по формуле

(3)

где αΤ - полный коэффициент поглощения тела. Радиационными П. можно измерять температуру, начиная с 200°С. В промышленности П. широко применяют в системах контроля и управления температурными режимами разнообразных технологических процессов.

Лит.: Рибо Г., Оптическая пирометрия, пер. с франц., М. - Л., 1934; Гордов А. Н., Основы пирометрии, 2 изд., М., 1971.

В. Н. Колесников.

Рис. 1. Принципиальная схема визуального яркостного пирометра с исчезающей нитью: 1 - источник излучения; 2 - оптическая система (телескоп пирометра); 3 - эталонная лампа накаливания; 4 - фильтр с узкой полосой пропускания; 5 - объектив; 6 - реостат, которым регулируют ток накала; 7 - измерительный прибор (миллиамперметр).

Рис. 2. Оптическая система автоматического фотоэлектрического пирометра: 1 - источник излучения; 2 - линзы оптической системы; 3 - модулятор, попеременно пропускающий излучение источника и эталонной лампы 4 к фотоэлементу 7; 5 - фильтр с узкой частотной полосой пропускания; 6 - погнутая линза. Фотоэлемент поочерёдно освещается то источником, то лампой. При неравенстве создаваемых ими освещённостей в цепи фотоэлемента возникает переменная составляющая фототока, амплитуда которой пропорциональна разности освещённостей. При измерениях ток накала лампы регулируют так, чтобы переменная составляющая фототока стала равна нулю.

пирометр         
  • Стационарный пирометр инфракрасного излучения
  • Оптический пирометр
м.
Прибор для измерения высоких температур, действие которого основано на изменении разнообразных свойств тела в зависимости от температуры.
пирометр         
  • Стационарный пирометр инфракрасного излучения
  • Оптический пирометр
ПИР'ОМЕТР, пирометра, ·муж. (от ·греч. pyr - огонь и metron - мера) (физ., тех.). Прибор для измерения высоких температур.
ПИРОМЕТРЫ         
  • Стационарный пирометр инфракрасного излучения
  • Оптический пирометр
(от греч. pyr - огонь и ...метр) оптические, приборы для измерения температуры непрозрачных тел по их излучению в оптическом диапазоне спектра.
Пирометр         
  • Стационарный пирометр инфракрасного излучения
  • Оптический пирометр
Пиро́метр (от  «огонь, жар» +  «измеряю») — прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта преимущественно в диапазонах инфракрасного излучения и видимого света.
ПИРОМЕТР         
  • Стационарный пирометр инфракрасного излучения
  • Оптический пирометр
а, м.
Прибор для измерения высоких температур (выше 600 по Цельсию).
Что такое пирометрия - определение