Поверхностная энергия - определение. Что такое Поверхностная энергия
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Поверхностная энергия - определение

Найдено результатов: 130
Поверхностная энергия         

в термодинамике, избыток энергии в тонком слое вещества у поверхности соприкосновения тел (фаз) по сравнению с энергией вещества внутри тела. Полная П. э. складывается из работы образования поверхности, т. е. работы, необходимой для преодоления сил межмолекулярного (или межатомного) взаимодействия при перемещении молекул (атомов) из объёма фазы в Поверхностный слой, и теплового эффекта, связанного с этим процессом. В соответствии с термодинамическими зависимостями удельная полная П. э.

u = σ + q = σ -,

где σ - удельная свободная П. э., тождественно равная для подвижных жидкостей поверхностному натяжению (См. Поверхностное натяжение), q - скрытая теплота (связанная энергия) единицы площади поверхности, Т - абсолютная температура и - удельная поверхностная Энтропия, имеющая обычно отрицательную величину. Свободная П. э. с ростом температуры уменьшается, тогда как полная П. э. неполярных (неассоциированных) жидкостей остаётся постоянной, а полярных - несколько возрастает. Так, для воды при 0, 20 и 100 °С значения u соответственно равны 117, 120 и 129 мдж/м2 или эрг/см2. С приближением к критической температуре (См. Критическая температура) различие в составе и свойствах контактирующих фаз сглаживается, поверхность раздела фаз исчезает и П. э. обращается в нуль. П. э. влияет на многие физико-химические свойства твёрдых тел и жидкостей. Особенно возрастает её роль в высокодисперсных коллоидных системах (См. Коллоидные системы), где поверхность раздела фаз предельно велика.

Л. А. Шиц.

ПОВЕРХНОСТНАЯ ЭНЕРГИЯ         
избыток потенциальной энергии вещества, определяемой всеми взаимодействиями частиц, у поверхности какого-либо тела по сравнению с энергией в объеме.
Поверхностная энергия         
Поверхностная энергия, также свободная поверхностная энергия, поверхностная энергия Гиббса — термодинамическая функция, характеризующая энергию межмолекулярного взаимодействия частиц на поверхности раздела фаз с частицами каждой из контактирующих фаз. Другое определение поверхностной энергии — это потенциальная энергия, которая сосредоточена на межфазной поверхности (границе раздела фаз), необходимая для образования единицы площади поверхности. Является избыточной по сравнению с энергией в объёме, то есть не равной нулю. Единица измерения в си
Поверхностная ионизация         

термическая Десорбция (испарение) положительных (положительная П. и.) или отрицательных (отрицательная П. и.) ионов с поверхностей твёрдых тел. Чтобы эмиссия ионов при П. и. была стационарной, скорость поступления на поверхность соответствующих ионам атомов, молекул или радикалов (См. Радикалы свободные) (за счёт диффузии (См. Диффузия) этих частиц из объёма тела или протекающей одновременно с П. и. адсорбции (См. Адсорбция)) должна равняться суммарной скорости десорбции ионов и нейтральных частиц. П. и. происходит и при собственном испарении твёрдых тел, например тугоплавких металлов.

Количественной характеристикой П. и. служит степень П. и. α= νi0, где νi и ν0 - потоки одновременно десорбируемых одинаковых по химическому составу ионов и нейтральных частиц. νi = CN exp (-li/kT), a ν0 = DNexp (-l0/k T), здесь k - Больцмана постоянная, T - абсолютная температура поверхности, li и l0 - теплоты десорбции в ионном и нейтральном состояниях, N - концентрация частиц данного сорта на поверхности, а коэффициенты С и D слабо (в сравнении с экспонентами) зависят от Т. Отсюда

α = .

Взаимодействие частиц с поверхностями отображают кривыми типа показанной на рис. 1. Переход с кривой для нейтральных частиц А на кривую для ионов А+ на расстоянии х → ∞ от поверхности соответствует ионизации (См. Ионизация) частицы с переводом освободившегося электрона в твёрдое тело. Требуемая для этого энергия равна e (V-φ); V - Ионизационный потенциал частицы, еφ - Работа выхода тела, е - заряд электрона. Выражение α через эти величины приводит к Ленгмюра - Саха уравнению (См. Ленгмюра - Саха уравнение), причём для положительной П. и. (li+ - l0) = e (V -φ), а для отрицательной П. и. (li- - l0) = е (φ-S), где eS - энергия сродства к электрону (См. Сродство к электрону) частицы. П. и. наиболее эффективна (α велико) для частиц с li < l0 или φ > V и S > φ; α для них уменьшается с ростом Т. При обратных неравенствах П. и. усиливается с возрастанием Т (рис. 2). li и l0 зависят от N - обычно li растет, а l0 падает с увеличением N. Если при Т > Т0 соблюдается условие эффективной П. и. (li < l0 и νi >> ν0), то при Т = Т0 знак (l0 - li) меняется, а α начинает скачкообразно падать до малых значений. Т0 называется температурным порогом П. и.

Внешнее электрическое поле Е, ускоряющее ионы с поверхности, снижает величину li. При E < 107 в/см это снижение Δl = е = 3,8․10-4 эв (E должно быть выражено в в/см). Соответственно растет α. Если li < l0 и νI > ν0, Е при стационарной П. и. уменьшает N и T0. Так, T0 для атомов Cs на W с 1000 К при Е = 104 в/см снижается до 300 °K при Е = 107 в/см. Это даёт основание рассматривать явления десорбции и испарения ионов электрическим полем при низких Т как П. и. Современная экспериментальная техника позволяет наблюдать П. и. частиц с V 10 в и S ≥ 0.6 в. С помощью электрического поля эти пределы могут быть существенно расширены.

Приведённые выше закономерности П. и. справедливы (подтверждены опытом) для однородных поверхностей. Однако на практике чаще приходится иметь дело с неоднородными поверхностями. на которых l0, li, φ и N неодинаковы на различных участках. В таких случаях указанные зависимости α от Т и Е сохраняются для некоторых усреднённых значений l0, li и φ.

П. и. широко используется в ионных источниках (См. Ионный источник) различного назначения, в чувствительных детекторах частиц, для компенсации объёмного заряда электронов в термоэлектронных преобразователях (См. Термоэлектронный преобразователь), перспективна для создания плазменных двигателей (См. Плазменные двигатели), а также лежит в основе многих методов изучения физико-химических характеристик поверхностей твёрдых тел и взаимодействующих с ними частиц.

Лит.: Зандберг Э. Я., Ионов Н. И., Поверхностная ионизация, М,, 1969.

Н. И. Ионов.

Рис. 1. Потенциальные кривые взаимодействия систем поверхность твёрдого тела - нейтральная частица (А) и поверхность - положительный ион (А+); х - удаление от поверхности; U(x) - энергия связи частицы с поверхностью. Расстояние хр соответствует равновесному состоянию частицы у поверхности, а глубины "потенциальных ям" li и l0 равны теплотам десорбции иона и нейтральной частицы соответственно. Разность li-l0 в данном случае равна разности энергии ионизации eV нейтральной частицы (V - её ионизационный потенциал, е - заряд электрона) и работы выхода поверхности eφ.

Рис. 2. Характерные зависимости степени поверхностной ионизации α в стационарных процессах от температуры T: 1 - для случая, когда теплота десорбции иона li, меньше теплоты десорбции нейтральной частицы l0; 2 - в случае, когда li>l0. T0 - температурный порог поверхностной ионизации.

АТОМНАЯ ЭНЕРГИЯ         
  • Зависимость удельной энергии связи (то есть энергии связи, приходящейся на один нуклон) от числа нуклонов в ядре.
  • Установленная мощность (синяя линия) и годовое производство энергии (красная линия) ядерными электростанциями с 1980 по 2012 гг.
  • Схема деления <sup>235</sup>U. Низкоскоростной (тепловой) нейтрон, захваченный ядром урана, дестабилизирует его, и оно делится на две части, а также испускает 2-3 (в среднем 2,5) нейтрона деления.
  • [[Ядерный взрыв]].
  • урана-235]].
  • атомный ледокол «Ленин»]].
ЭНЕРГИЯ, СОДЕРЖАЩАЯСЯ В АТОМНЫХ ЯДРАХ И ВЫДЕЛЯЕМАЯ ПРИ ЯДЕРНЫХ РЕАКЦИЯХ И РАДИОАКТИВНОМ РАСПАДЕ
Энергия ядерной реакции; Энергия ядерная; Атомная энергия
см. Ядерная энергия
Кинетическая энергия         
  • Зависимости кинетической энергии от скорости в классическом и релятивистском случаях для массы в 1 кг
ВИД МЕХАНИЧЕСКОЙ ЭНЕРГИИ
Энергия кинетическая; Энергия турбулентности
Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек. Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии.
КИНЕТИЧЕСКАЯ ЭНЕРГИЯ         
  • Зависимости кинетической энергии от скорости в классическом и релятивистском случаях для массы в 1 кг
ВИД МЕХАНИЧЕСКОЙ ЭНЕРГИИ
Энергия кинетическая; Энергия турбулентности
энергия механической системы, зависящая от скоростей движения составляющих ее частей. В классической механике кинетическая энергия материальной точки массы m, движущейся со скоростью v, равна 1/2mv2.
Кинетическая энергия         
  • Зависимости кинетической энергии от скорости в классическом и релятивистском случаях для массы в 1 кг
ВИД МЕХАНИЧЕСКОЙ ЭНЕРГИИ
Энергия кинетическая; Энергия турбулентности

энергия механической системы, зависящая от скоростей движения её точек. К. э. Т материальной точки измеряется половиной произведения массы m этой точки на квадрат её скорости υ, т. е. Т = 1/2 2. К. э. механической системы равна арифметической сумме К. э. всех её точек: Т = Σ1/2 mkυ2k. Выражение К. э. системы можно ещё представить в виде Т = 1/2 c2 + Tc, где М - масса всей системы, υc - скорость центра масс, Tc - К. э. системы в её движении вокруг центра масс. К. э. твёрдого тела, движущегося поступательно, вычисляется так же, как К. э. точки, имеющей массу, равную массе всего тела. Формулы для вычисления К. э. тела, вращающегося вокруг неподвижной оси, см. в ст. Вращательное движение.

Изменение К. э. системы при её перемещении из положения (конфигурации) 1 в положение 2 происходит под действием приложенных к системе внешних и внутренних сил и равно сумме работ и этих сил на данном перемещении: . Это равенство выражает теорему об изменении К. э., с помощью которой решаются многие задачи динамики.

При скоростях, близких к скорости света, К. э. материальной точки

,

где m0 - масса покоящейся точки, с - скорость света в вакууме (m0с2 - энергия покоящейся точки). При малых скоростях (υ<< c) последнее соотношение переходит в обычную формулу 1/2 2. См. также Энергия, Энергии сохранения закон.

Лит. см. при ст. Динамика.

С. М. Тарг.

Ядерная энергия         
  • Зависимость удельной энергии связи (то есть энергии связи, приходящейся на один нуклон) от числа нуклонов в ядре.
  • Установленная мощность (синяя линия) и годовое производство энергии (красная линия) ядерными электростанциями с 1980 по 2012 гг.
  • Схема деления <sup>235</sup>U. Низкоскоростной (тепловой) нейтрон, захваченный ядром урана, дестабилизирует его, и оно делится на две части, а также испускает 2-3 (в среднем 2,5) нейтрона деления.
  • [[Ядерный взрыв]].
  • урана-235]].
  • атомный ледокол «Ленин»]].
ЭНЕРГИЯ, СОДЕРЖАЩАЯСЯ В АТОМНЫХ ЯДРАХ И ВЫДЕЛЯЕМАЯ ПРИ ЯДЕРНЫХ РЕАКЦИЯХ И РАДИОАКТИВНОМ РАСПАДЕ
Энергия ядерной реакции; Энергия ядерная; Атомная энергия
Я́дерная эне́ргия (а́томная эне́ргия) — энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях и радиоактивном распаде.
Звуковая энергия         
Звукова́я эне́ргия — энергия колебаний частиц среды, переносящей звуковые волны; единица измерения в Международной системе единиц (СИ) — джоуль (Дж).

Википедия

Поверхностная энергия

Поверхностная энергия, также свободная поверхностная энергия, поверхностная энергия Гиббса — термодинамическая функция, характеризующая энергию межмолекулярного взаимодействия частиц на поверхности раздела фаз с частицами каждой из контактирующих фаз. Другое определение поверхностной энергии — это потенциальная энергия, которая сосредоточена на межфазной поверхности (границе раздела фаз), необходимая для образования единицы площади поверхности. Является избыточной по сравнению с энергией в объёме, то есть не равной нулю. Единица измерения в системе СИ — Дж/м2.

Существование свободной поверхностной энергии вместе с поверхностным натяжением является причиной возникновения метастабильных состояний (состояний переохлаждения, пересыщения).