Пограничный слой - определение. Что такое Пограничный слой
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Пограничный слой - определение

Найдено результатов: 115
ПОГРАНИЧНЫЙ СЛОЙ         
тонкая область течения вязкой жидкости (газа), которая образуется у поверхности обтекаемого ею твердого тела или на границе раздела двух потоков жидкости с различными скоростями, температурами или химическим составом. В пограничном слое скорость (температура, концентрация) резко изменяется; напр., скорость жидкости от нуля на поверхности обтекаемого тела, к которой она прилипает, возрастает в результате внутреннего трения до скорости основного потока.
Пограничный слой         

область течения вязкой жидкости (газа) с малой по сравнению с продольными размерами поперечной толщиной, образующаяся у поверхности обтекаемого твёрдого тела или на границе раздела двух потоков жидкости с различными скоростями, температурами или химическим составом. П. с. характеризуется резким изменением в поперечном направлении скорости (динамический П. с.), или температуры (тепловой, или температурный, П. с.), или же концентраций отдельных химических компонентов (диффузионный, или концентрационный, П. с.). На формирование течения в П. с. основное влияние оказывают вязкость, теплопроводность и диффузионная способность жидкости (газа). Внутри динамического П. с. происходит плавное изменение скорости от её значения во внешнем потоке до нуля на стенке (вследствие прилипания вязкой жидкости к твёрдой поверхности). Аналогично внутри П. с. плавно изменяются температура и концентрация.

Режим течения в динамическом П. с. зависит от Рейнольдса числа (См. Рейнольдса число) Re и может быть ламинарным или турбулентным. При ламинарном режиме отдельные частицы жидкости (газа) движутся по траекториям, форма которых близка к форме обтекаемого тела или условной границы раздела между двумя жидкими (газообразными) средами. При турбулентном режиме в П. с. на некоторое осреднённое движение частиц жидкости в направлении основного потока налагается хаотическое, пульсационное движение отдельных жидких конгломератов. В результате интенсивность переноса количества движения, а также процессов тепло- и массопереноса резко увеличиваются, что приводит к возрастанию коэффициента поверхностного трения, тепло- и массообмена. Значение критического числа Рейнольдса, при котором происходит переход в П. с. ламинарного течения в турбулентное, зависит от степени шероховатости обтекаемой поверхности, уровня турбулентности внешнего потока, Маха числа (См. Маха число) М и некоторых др. факторов. При этом переход ламинарного режима течения в турбулентный с возрастанием Re происходит в П. с. не внезапно, а имеется переходная область, где попеременно чередуются ламинарный и турбулентный режимы.

Толщина δ динамического П. с. определяется как то расстояние от поверхности тела (или от границы раздела жидкостей), на котором скорость в П. с. можно практически считать равной скорости во внешнем потоке. Значение δ зависит главным образом от числа Рейнольдса, причём при ламинарном режиме течения δ Пограничный слой lRe-0.5, а при турбулентном - δ Пограничный слой lRe-0.2, где l - характерный размер тела.

Развитие теплового П. с. определяется, помимо числа Рейнольдса, также Прандтля числом, которое характеризует соотношение между толщинами динамического и теплового П. с. Соответственно на развитие диффузионного П. с. дополнительное влияние оказывает диффузионное число Прандтля, или Шмидта число.

При больших скоростях внешнего потока газа внутри П. с. происходит переход кинетической энергии молекул в тепловую, вследствие чего локальная температура газа увеличивается. В случае теплоизолированной поверхности температура газа в П. с. может приближаться к температуре торможения

,

где Te температура газа вне П. с., k = cp/cv - отношение теплоёмкостей при постоянном давлении и постоянном объёме.

Характер течения в П. с. оказывает решающее влияние на отрыв потока от поверхности обтекаемого тела. Причина этого заключается в том, что при наличии достаточно большого положительного продольного градиента давления кинетическая энергия заторможенных в П. с. частиц жидкости становится недостаточной для преодоления сил давления, течение в П. с. теряет устойчивость и возникает т. н. отрыв потока (см. Отрывное течение).

При очень больших числах Рейнольдса толщина П. с. очень мала по сравнению с характерными размерами тела. Поэтому почти во всей области течения, за исключением тонкого П. с., влияние сил вязкости несущественно по сравнению с инерциальными силами, и жидкость в этой области можно рассматривать как идеальную. Одновременно вследствие малой толщины П. с. давление в нём в поперечном направлении можно практически считать постоянным. В результате весьма эффективным оказывается такой метод изучения обтекания тел потоком жидкости (газа), когда всё поле течения разбивается на 2 части - область течения идеальной жидкости и тонкий П. с. у поверхности тела. Течение в первой области изучается с помощью уравнений движения идеальной жидкости, что позволяет определить распределение давления вдоль поверхности тела; тем самым определяется и давление в П. с. Течение внутри П. с. рассчитывается после этого с учётом вязкости, теплопроводности и диффузии, что позволяет определить поверхностное трение и коэффициент тепло- и массообмена. Однако такой подход оказывается неприменимым в явном виде в случае отрыва потока от поверхности тела. Он неприменим и при малых Re, когда влияние вязкости распространяется на довольно большие расстояния от поверхности тела.

Лит.: Лойцянский Л. Г., Механика жидкости и газа, 4 изд., М., 1973; Шлихтинг Г.. Теория пограничного слоя, пер. с нем., М., 1974; Основы теплопередачи в авиационной и ракетной технике, М., 1960; Кутателадзе С. С., Леонтьев А. И., Тепломассообмен и трение в турбулентном пограничном слое, М., 1972.

Н. А. Анфимов.

Пограничный слой         
Пограни́чный слой (ПС) в аэродинамике — слой трения: тонкий слой на поверхности обтекаемого тела или летательного аппарата (ЛА), в котором проявляется эффект вязкости. ПС характеризуется сильным градиентом скорости потока: скорость меняется от нулевой, на поверхности ЛА, до скорости потока вне пограничного слоя (в аэродинамике принято рассматривать ЛА неподвижным, а набегающий на него поток газа имеющим скорость ЛА, то есть в системе отсчёта ЛА).
Кипящий слой         
  • псевдоожижения]].<!-- : Distributor — распределитель потока газа; Gas bubble — пузырьки газа; Solid paticle — твёрдые частицы; Solid — твёрдая фаза -->
Кипя́щий слой создаётся в тех случаях, когда некоторое количество твёрдых частиц находится под воздействием восходящего потока газа (обычно воздуха) или смеси из газа и жидкости, благодаря чему твёрдые частицы находятся в парящем состоянии. Такая гетерофазная система ведёт себя подобно жидкости.
КИПЯЩИЙ СЛОЙ         
  • псевдоожижения]].<!-- : Distributor — распределитель потока газа; Gas bubble — пузырьки газа; Solid paticle — твёрдые частицы; Solid — твёрдая фаза -->
см. Псевдоожижение.
Перемешанный слой         
Перемешанный слой (Квазиоднородный слой) в океанологии и лимнологии — это слой, в котором активная турбулентность гомогенизировала параметры среды (чаще всего рассматриваются температура и солёность) на определённом интервале глубин. Поверхностный перемешанный слой — это слой, где данная турбулентность вызывается ветрами, охлаждением или такими процессами, как испарение или формирование льда, которое приводит к увеличению солёности и, следовательно, к увеличению конвекции, которая и перемешивает нижележащие слои.
Кипящий слой         
  • псевдоожижения]].<!-- : Distributor — распределитель потока газа; Gas bubble — пузырьки газа; Solid paticle — твёрдые частицы; Solid — твёрдая фаза -->

псевдоожиженный слой, состояние слоя зернистого сыпучего материала, при котором под влиянием проходящего через него потока газа или жидкости (сжижающих агентов) частицы твёрдого материала интенсивно перемещаются одна относительно другой. В этом состоянии слой напоминает кипящую жидкость, приобретая некоторые её свойства, и его поведение подчиняется законам гидростатики. В К. с. достигается тесный контакт между зернистым материалом и сжижающим агентом, что делает эффективным применение К. с. в аппаратах химической промышленности, где необходимо взаимодействие твёрдой и текучей фаз (диффузионные, каталитические процессы и др.).

Переход неподвижного слоя в кипящий происходит при такой скорости ожижающего агента, когда гидродинамическое давление потока Р уравновешивает силу тяжести G, действующую на частицы. При дальнейшем увеличении скорости слой вначале расширяется при неизменном гидравлическом сопротивлении, а при достижении условия P>G частицы начинают выноситься из слоя. На приведена диаграмма, характеризующая зависимость перепада давления в слое ΔР от скорости движения сжижающего агента ω0. Пока слой неподвижен, Р возрастает при увеличении ω0 (участок АВ). После точки В, соответствующей переходу слоя в кипящее состояние, сопротивление слоя не изменяется при росте скорости (участок ВС). После точки С, соответствующей началу уноса частиц твердого материала, сопротивление слоя падает. Скорости ожижающего агента, соответствующие точкам В и С, называются скоростью псевдоожижения (ω'0) и скоростью уноса (ω"0). Отношение W= ω''0/ ω'0 называется числом псевдоожижения. Оно характеризует интенсивность перемешивания частиц в К. с. Наиболее интенсивному перемешиванию соответствует W=2, при дальнейшем росте W слой становится неоднородным: происходит прорыв крупных пузырей газа через него и начинается интенсивное выбрасывание частиц в пространство над его поверхностью. Возможно также образование газовых пробок. К. с. характеризуется постоянством температуры по высоте и сечению, даже если в нём протекают процессы с большим тепловым эффектом, а также высокими значениями коэффициента теплопередачи к поверхностям теплообмена.

Аппараты с К. с. широко применяются в промышленности благодаря простоте устройства, интенсивности действия, лёгкости благодаря простоте устройства, интенсивности действия, легкости автоматизации, относительно небольшому гидравлическому сопротивлению слоя (независимо от скорости ожижающего агента. Помимо осуществления химических процессов, их используют для адсорбции веществ из газов и жидкостей, теплообмена, сушки твердого материала, а также для его перемешивания, классификации и транспортировки. Примером, наглядно демонстрирующим работу аппарата с К. с., является действие установки для сушки в К. с. (). Воздух поступает через фильтр 1 и калорифер 2 в сушильную камеру 3, где создаётся К. с. материала, подаваемого шнеком 4. После обеспыливания в циклоне 5 и очистки в фильтре 6 воздух выбрасывается в атмосферу вентилятором 7. Высушенный материал переливается через порог 8 и удаляется из аппарата. Другим примером аппаратов такого типа является Кипящего слоя печь.

К недостаткам аппаратов с К. с. относятся истирание частиц твёрдого материала, унос их потоком сжижающего агента, эрозия аппаратуры, ограниченный диапазон скоростей сжижающего агента.

Лит.: Гельперин Н. И., Айнштейн В. Г., Кваша В. Б., Основы техники псевдоожижения, М., 1967; Забродский С. С., Гидродинамика и теплообмен в псевдоожиженном (кипящем) слое, М. - Л., 1963; Лева М., Псевдоожижение, пер. с англ., М., 1961.

В. Л. Пебалк.

Рис. 1 к ст. Кипящий слой.

Рис. 2 к ст. Кипящий слой.

Пограничное состояние         
СЛАБЫЙ УРОВЕНЬ ВЫРАЖЕННОСТИ ПСИХИЧЕСКОГО РАССТРОЙСТВА, МЕЖДУ ПСИХИЧЕСКИМ ЗДОРОВЬЕМ И ПСИХОЗОМ
Пограничный уровень; Пограничный синдром; Бордерлайн
Пограни́чное состоя́ние, пограни́чный синдро́м, пограни́чный у́ровень () — относительно слабый уровень выраженности психического расстройства, не доходящий до уровня выраженной патологии. В психоаналитической традиции термин у́же и подразумевает под собой уровень развития организации личности более «нарушенный», чем невротический, но менее «нарушенный», чем психотическийНенси Мак-Вильямс, «Психоаналитическая диагностика: Понимание структуры личности в клиническом процессе», глава «Характеристики пограничной (borderline) структуры личности», изд.
Мономолекулярный слой         

монослой, слой вещества толщиной в одну молекулу на поверхности раздела фаз (тел). М. с. возникают при адсорбции, поверхностной диффузии и в результате испарения растворителя из раствора, содержащего нелетучий компонент. М. с., образованные поверхностно-активными веществами (См. Поверхностно-активные вещества) на поверхности жидкости или на границе двух несмешивающихся жидкостей, могут находиться в различных двумерных состояниях: газообразном, конденсированном и промежуточном ("жидко-расширенном"). В газообразных М. с. расстояние между молекулами велико по сравнению с их размерами, поэтому межмолекулярное (когезионное) взаимодействие практически отсутствует. Конденсированные М. с., напротив, имеют предельно плотную упаковку молекул. В случае жирных кислот, спиртов или др. соединений, молекулы которых можно представить в виде углеводородной цепи с полярной группой на конце, конденсированные М. с. подобны "частоколу", занимающему всю площадь поверхности. Каждая молекула в таком "частоколе" расположена перпендикулярно или наклонно к поверхности раздела фаз и независимо от своей длины обычно занимает площадку 20-25 Å2. Высокомолекулярные соединения линейного строения, как правило, образуют М. с. с горизонтальной ориентацией макромолекул. При достаточно высокой когезии (См. Когезия) М. с. могут проявлять поверхностную вязкость и прочность, сильно отличающиеся от этих же характеристик объёмных фаз.

Структура и свойства М. с. оказывают большое влияние на процессы массопереноса (испарение, диффузию) и катализа, трение, адгезию (См. Адгезия), коррозию (См. Коррозия), что учитывают при решении соответствующих технологических и технических задач. От состояния М. с. часто решающим образом зависит устойчивость высокодисперсных систем: золей, эмульсий, суспензий. Важную роль играют М. с. также в разнообразных биологических системах. Так, во всех клетках живых организмов имеются мембранные структуры. Основу биологических мембран (См. Биологические мембраны) составляют два М. с. белковых молекул, между которыми расположен двойной (бимолекулярный) слой липидов. Толщина такой четырёхслойной мембраны 70-80 Å. Чередованием различного рода М. с. обусловлена также ламеллярная (слоистая) структура некоторых клеточных органоидов, например хлоропластов (См. Хлоропласты) в клетках зелёных растений. Искусственные М. с. применяют как модели биологических мембран при изучении их структуры и функций.

Лит.: Adamson A. W., Physical chemistry of surfaces, 2 ed., N. Y. - [a. o.], 1971; Gaines G. L., Insoluble monolayers at liquid-gas interfaces, N. Y. - [a. o.], [1966]; Береджик Н., Исследование мономолекулярных слоев полимеров, в кн.: Новейшие методы исследования полимеров, пер. с англ., М., 1966, гл. 16.

Л. А. Шиц.

Session Border Controller         
SBC ( — пограничный контроллер сессий) — оборудование операторского класса (программное или аппаратное), являющееся частью операторских NGN сетей. Пограничные контроллеры сессий выполняют целый ряд функций, необходимых не только для успешного и безопасного функционирования операторской сети, но и для стабильного развития операторского бизнеса.

Википедия

Пограничный слой
Пограни́чный слой (ПС) в аэродинамике — слой трения: тонкий слой на поверхности обтекаемого тела или летательного аппарата (ЛА), в котором проявляется эффект вязкости. ПС характеризуется сильным градиентом скорости потока: скорость меняется от нулевой, на поверхности ЛА, до скорости потока вне пограничного слоя (в аэродинамике принято рассматривать ЛА неподвижным, а набегающий на него поток газа имеющим скорость ЛА, то есть в системе отсчёта ЛА).
Что такое ПОГРАНИЧНЫЙ СЛОЙ - определение