Подземное растворение - определение. Что такое Подземное растворение
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Подземное растворение - определение

Подземное хранилище газа; Подземное газохранилище; ПХГ
Найдено результатов: 19
Подземное растворение      

полезных ископаемых, метод добычи полезного ископаемого через скважины растворением водой на месте его залегания. Применяется для разработки залежей каменной и калийных солей.

Добыча рассолов каменной соли через скважины известна с 12-14 вв. (см. Бурение). Технология управляемого П. р. солей была предложена Е. Н. Трэпом (США) в 1933 и усовершенствована в СССР П. А. Кулле и П. С. Бобко. П. р. калийных солей в промышленном масштабе освоено в Саскачеване (Канада) только в 1964.

При П. р. соляная залежь вскрывается скважиной, которая оборудуется концентрично расположенными свободновисящими рабочими колоннами: водоподающей и рассолозаборной (рис.). Растворитель - вода поступает в соляную залежь под давлением по кольцевому зазору между рассолозаборной и водоподающей колоннами.

Для получения рассолов промышленной концентрации (305-310 г/л) отработка продуктивной толщи ведётся в камерах ступенями снизу вверх. К кровле камеры подаётся нерастворитель - нефть, керосин или воздух, который предохраняет потолочину от растворения. Растворитель, нагнетаемый в камеру, легче заполняющего рассола. Поэтому он всплывает к верхней части камеры и, соприкасаясь с массивом соли, постепенно насыщается и опускается до башмака рассолозаборной колонны. Рассол под остаточным давлением извлекается по рассолоподъёмной колонне на поверхность. От скважины по трубопроводам рассол направляется через контрольно-распределительный пункт в резервуар кондиционного рассола, откуда транспортируется к потребителям. Растворы, получаемые методом П. р., являются исходным сырьём для извлечения хлора, соды, пищевой соли и других продуктов. В 1973 в СССР методом П. р. добыто более 20 млн. м3 рассолов.

Развитие П. р. связано с интенсификацией процесса конгруэнтного растворения и внедрением способов избирательного растворения (применением добавок тяжёлых металлов, созданием магнитного поля, использованием нагретого растворителя и др.).

П. р. используется также для создания в соляных отложениях ёмкостей-хранилищ нефтепродуктов и сжиженных газов. См. также Геотехнология.

Лит.: Здановский А. Б., Галургия, Л., 1972.

Е. Ж. Аренс.

Схема добычи каменной соли подземным растворением: 1 - основная тампонажная колонна; 2 - соляной пласт; 3 - водоподающая колонна; 4 - рассолоподъёмная колонна; 5 - водопровод; 6 - рассолопровод; 7 - трубопровод нерастворителя.

Подземная радиосвязь         
Подзе́мная радиосвя́зь, подзе́мное ра́дио () — технология, позволяющая передавать сигнал сквозь толщи породы.
Подземная радиосвязь         

связь между двумя или несколькими объектами посредством радиоволн, распространяющихся в толще Земли. Объекты связи нередко размещают на большой глубине - в шахтах, тоннелях, подземных бункерах, скважинах и т.д.

В системах П. р. излучаемые антеннами радиоволны распространяются в горных породах с высоким электрическим сопротивлением (пласты каменной соли, базальты и др.), заэкранированных сверху толщей осадочных пород с хорошей электрической проводимостью. Такие системы обладают очень высокой защищенностью от всех видов атмосферных и индустриальных помех радиоприёму (См. Помехи радиоприёму) и могут иметь отношение сигнал/шум на входе приёмников значительно выше, чем подобные им системы наземной связи. Кроме того, они характеризуются высокой стабильностью условий распространения радиоволн (См. Распространение радиоволн), которые практически не зависят от времени суток, времени года, состояния ионосферы (См. Ионосфера) и др. факторов. При использовании антенн, расположенных на небольшой глубине, основную часть пути между передатчиком и приёмником радиоволны проходят в атмосфере, и свойства таких систем П. р. мало отличаются от свойств подобных им систем наземной радиосвязи. В системах П. р. можно использовать радиоволны в диапазонах от мириаметрового (сверхдлинные волны) до декаметрового (короткие волны).

Лит.: Макаров Г. И., Павлов В. А., Обзор работ, связанных с подземным распространением радиоволн, в сборнике: Распространение радиоволн, в. 4, Л., 1966 (Проблемы дифракции и распространения волн. 5); Долуханов М. П., Распространение радиоволн, М., 1972.

Ю. В. Хоменюк.

РАСТВОРЫ         
  • Растворение поваренной соли (NaCl) в воде
ГОМОГЕННАЯ (ОДНОРОДНАЯ) СМЕСЬ, СОСТОЯЩАЯ ИЗ ЧАСТИЦ РАСТВОРЁННОГО ВЕЩЕСТВА, РАСТВОРИТЕЛЯ И ПРОДУКТОВ ИХ ВЗАИМОДЕЙСТВИЯ
Растворение; Насыщенный раствор; Концентрированный раствор; Насыщеный раствор; Ненасыщеный раствор; Ненасыщенный раствор; Пересыщенный раствор; Растворы; Растворы (химич.); Растворы неэлектролитов; Растворы электролитов; Перенасыщенный раствор
однофазные системы, состоящие из двух или более компонентов. По своему агрегатному состоянию растворы могут быть твердыми, жидкими или газообразными. Так, воздух - это газообразный раствор, гомогенная смесь газов; водка - жидкий раствор, смесь нескольких веществ, образующих одну жидкую фазу; морская вода - жидкий раствор, смесь твердого (соль) и жидкого (вода) веществ, образующих одну жидкую фазу; латунь - твердый раствор, смесь двух твердых веществ (меди и цинка), образующих одну твердую фазу. Смесь бензина и воды не является раствором, поскольку эти жидкости не растворяются друг в друге, оставаясь в виде двух жидких фаз с границей раздела. Компоненты растворов сохраняют свои уникальные свойства и не вступают в химические реакции между собой с образованием новых соединений. Так, при смешивании двух объемов водорода с одним объемом кислорода получается газообразный раствор. Если эту газовую смесь поджечь, то образуется новое вещество - вода, которая сама по себе раствором не является. Компонент, присутствующий в растворе в большем количестве, принято называть растворителем, остальные компоненты - растворенными веществами.
Однако иногда бывает трудно провести грань между физическим перемешиванием веществ и их химическим взаимодействием. Например, при смешивании газообразного хлороводорода HCl с водой H2O образуются ионы H3O+ и Cl-. Они притягивают к себе соседние молекулы воды, образуя гидраты. Таким образом, исходные компоненты - HCl и H2O - после смешивания претерпевают существенные изменения. Тем не менее ионизация и гидратация (в общем случае - сольватация) рассматриваются как физические процессы, происходящие при образовании растворов.
Одним из важнейших типов смесей, представляющих собой гомогенную фазу, являются коллоидные растворы: гели, золи, эмульсии и аэрозоли. Размер частиц в коллоидных растворах составляет 1-1000 нм, в истинных растворах 0,1 нм (порядка размера молекул).
См. также:
ПЕРЕСЫЩЕННЫЙ РАСТВОР         
  • Растворение поваренной соли (NaCl) в воде
ГОМОГЕННАЯ (ОДНОРОДНАЯ) СМЕСЬ, СОСТОЯЩАЯ ИЗ ЧАСТИЦ РАСТВОРЁННОГО ВЕЩЕСТВА, РАСТВОРИТЕЛЯ И ПРОДУКТОВ ИХ ВЗАИМОДЕЙСТВИЯ
Растворение; Насыщенный раствор; Концентрированный раствор; Насыщеный раствор; Ненасыщеный раствор; Ненасыщенный раствор; Пересыщенный раствор; Растворы; Растворы (химич.); Растворы неэлектролитов; Растворы электролитов; Перенасыщенный раствор
раствор, в котором при данных температуре и давлении концентрация растворенного вещества больше, чем в насыщенном растворе. Пересыщенный раствор обычно получают медленным охлаждением раствора, насыщенного при более высокой температуре.
Растворы         
  • Растворение поваренной соли (NaCl) в воде
ГОМОГЕННАЯ (ОДНОРОДНАЯ) СМЕСЬ, СОСТОЯЩАЯ ИЗ ЧАСТИЦ РАСТВОРЁННОГО ВЕЩЕСТВА, РАСТВОРИТЕЛЯ И ПРОДУКТОВ ИХ ВЗАИМОДЕЙСТВИЯ
Растворение; Насыщенный раствор; Концентрированный раствор; Насыщеный раствор; Ненасыщеный раствор; Ненасыщенный раствор; Пересыщенный раствор; Растворы; Растворы (химич.); Растворы неэлектролитов; Растворы электролитов; Перенасыщенный раствор
I Раство́ры

макроскопически однородные смеси двух или большего числа веществ (компонентов), образующие термодинамически равновесные системы. В Р. все компоненты находятся в молекулярно-дисперсном состоянии; они равномерно распределены в виде отдельных атомов, молекул, ионов или в виде групп из сравнительно небольшого числа этих частиц. С термодинамической точки зрения Р. - фазы переменного состава, в которых при данных внешних условиях соотношение компонентов может непрерывно меняться в некоторых пределах. Р. могут быть газообразными, твёрдыми (см. Твёрдые растворы). Чаще же всего термин "Р." относят к жидким Р.

Практически все жидкости, встречающиеся в природе, представляют собой Р.: морская вода - Р. большого числа неорганических и органических веществ в воде, нефть - Р. многих, как правило органических, компонентов и т.д. Р. широко представлены в технике и повседневной практике человека.

Простейшие составные части Р. (компоненты) обычно могут быть выделены в чистом виде; их смешением можно вновь получить Р. любого допустимого состава. Количественное соотношение компонентов определяется их концентрациями. Обычно основной компонент называют растворителем, а остальные компоненты - растворенными веществами. Если одним из компонентов является жидкость, а другим - газы или твёрдые вещества, то растворителем считают жидкость.

Классификация Р. основана на различных признаках. Так, в зависимости от концентрации растворённого вещества Р. делят на концентрированные и разбавленные; в зависимости от характера растворителя - на водные и неводные (спиртовые, аммиачные и т.п.); в зависимости от концентрации ионов водорода - на кислые, нейтральные и щелочные.

В соответствии с термодинамическими свойствами Р. подразделяют на те или иные классы, прежде всего - на идеальные и неидеальные (называемые также реальными). Идеальными Р. называют такие растворы, для которых Химический потенциал μi каждого компонента i имеет простую логарифмическую зависимость от его концентрации (например, от мольной доли xi):

μi = (p, T) + RT lnxi, (1)

где через обозначен химический потенциал чистого компонента, зависящий только от давления р и температуры Т, и где R - Газовая постоянная. Для идеальных Р. энтальпия смешения компонентов равна нулю, энтропия смешения выражается той же формулой, что и для идеальных газов, а изменение объёма при смешении компонентов равно нулю. Эти три свойства идеального Р. полностью характеризуют его и могут быть взяты в качестве определяющих для идеального Р. Для идеальных Р. выполняются Рауля законы и Генри закон. Опыт показывает, что Р. идеален только в том случае, если образующие его компоненты сходны друг с другом прежде всего в отношении геометрической конфигурации и размера молекул. Наиболее близки к идеальным Р. смеси соединений с изотопозамещёнными молекулами.

Как правило, для идеальных Р. соотношение (1) справедливо во всей области изменения концентраций. Концентрации, при которых в данном Р. начинают обнаруживаться заметные отклонения от идеальности, очень сильно зависят от природы образующих его веществ. Большинство достаточно разбавленных Р. ведут себя как идеальные.

Р., не обладающие свойствами идеальных Р., называются неидеальными. Для них выполняется соотношение, аналогичное (1) при замене концентрации на активность: ai = γixi, где ai - активность компонента i, γi - коэффициент активности, зависящий как от концентрации данного компонента, так и от концентраций остальных компонентов, а также от давления и температуры. Среди неидеальных Р. большой класс составляют регулярные Р., которые характеризуются той же энтропией смешения, что и идеальные Р., однако их энтальпия смешения отлична от нуля и пропорциональна логарифмам коэффициентов активности. Особый класс составляют атермальные Р., у которых теплота смешения равна нулю, а коэффициенты активности определяются только энтропийным членом и не зависят от температуры. Теория таких Р. часто позволяет предсказывать свойства неидеальных Р., например в случае неполярных компонентов с сильно различающимися молекулярными объёмами. Близки к атермальным многие Р. высокомолекулярных соединений в обычных растворителях.

При определённых температуре и давлении растворение одного компонента в другом обычно происходит в некоторых пределах изменения концентраций. Р., находящийся в равновесии с одним из чистых компонентов, называемом насыщенным (см. Насыщенный раствор), а его концентрация - Растворимостью этого компонента. Графически зависимость растворимости от температуры и давления представляется растворимости диаграммой (См. Растворимости диаграмма). При концентрациях растворённого вещества, меньших его растворимости, Р. является ненасыщенным. Если Р. не содержит центров кристаллизации (См. Кристаллизация), то его можно переохладить так, что концентрация растворённого вещества окажется выше его растворимости, а Р. становится пересыщенным. Ряд практически важных свойств Р. связан с изменением давления насыщенного пара растворителя над Р. при изменении концентрации растворённого вещества: понижение температуры замерзания (см. Криоскопия), повышение температуры кипения (см. Эбулиоскопия) и т.д.

Строение Р. определяется прежде всего характером компонентов, его образующих. Если компоненты близки по химическому строению, размерам молекул и т.п., то строение Р. принципиально не отличается от строения чистых жидкостей. Молекулы веществ, заметно отличающихся по своему строению и свойствам, обычно сильнее взаимодействуют друг с другом, что приводит к образованию комплексов в Р., которые вызывают отклонения от идеальности. Энергии образования этих комплексов достигают величин нескольких кдж/моль, что позволяет говорить о существовании в Р. слабых химических взаимодействий и образовании тех или иных химических соединений - новых компонентов Р. Взаимодействие с молекулами растворителя сопровождается у многих веществ (например, электролитов) обратным процессом - диссоциацией (См. Диссоциация). Соли, Кислоты и основания при растворении в воде и др. полярных растворителях частично или полностью распадаются на ионы, вследствие чего число различных частиц в Р. увеличивается. При электролитической диссоциации суммарная электронейтральность Р. сохраняется; около каждого иона образуется слой более тесно связанных с ним молекул растворителя - сольватная оболочка (см. Сольватация). В Р. при очень малых концентрациях растворённого вещества сохраняется структура растворителя. По мере увеличения концентрации возникают новые структуры, например в водных Р. возникают различные структуры кристаллогидратов (См. Кристаллогидраты). Ионы больших размеров разрушают структуру растворителя, в результате чего появляются экспериментально наблюдаемые неоднородности в этой структуре. Специфическими особенностями характеризуются Р. высокомолекулярных соединений (см. Растворы полимеров). Молекулярно-статистическая теория Р. развита лишь для простейших классов Р. Так, при рассмотрении Р. неассоциированных жидкостей часто используют представление о Р. как о статистической совокупности твёрдых образований ("сфер", "эллипсоидов", "стержней"), взаимодействующих друг с другом по определённому модельному закону. Для сильно разбавленных Р. электролитов ограничиваются учётом только электростатического взаимодействия ионов как точечных зарядов или как сферических образований определённого радиуса и т.д.

Лит.: Кириллин В. А., Шейндлин А. Е., Термодинамика растворов, М., 1956; Шахпаронов М. И., Введение в молекулярную теорию растворов, М., 1956; Prigogine I., The molecular theory of solutions, Arnst., 1957; Робинсон Р., Стокс Р., Растворы электролитов, пер. в англ., М., 1963; Тагер А. А., Физико-химия полимеров, 2 изд., М., 1968; Курс физической химии, под общ. ред. Я. И. Герасимова, 2 изд., т. 1-2, М., 1969-73.

Н. Ф. Степанов.

II Раство́ры

строительные, строительные материалы, получаемые в результате затвердевания рационально подобранных смесей вяжущего вещества (с водой, реже без неё) и мелкого заполнителя - растворных смесей. (Нередко термин "Р." неправомерно употребляют в значении "растворная смесь".) В соответствии с назначением Р. их подразделяют на кладочные, применяемые при возведении каменных конструкций (См. Каменные конструкции) (преимущественно из кирпича, бутового камня), отделочные - для штукатурных работ (См. Штукатурные работы) и нанесения декоративных слоев на стеновые панели и блоки, специальные (гидроизоляционные, кислотоупорные, акустические, тампонажные и др.). По виду вяжущего вещества (см. Вяжущие материалы) различают Р. на неорганических вяжущих: цементные, известковые, гипсовые и смешанные (например, известково-цементные) и на органических вяжущих: полимеррастворы (см. Полимербетон), асфальтовые растворы (см. Асфальтобетон) и др.

В зависимости от объёмной массы Р. делят на тяжёлые (на обычном песке) - объёмной массой 1500-2500 кг/м3 и лёгкие - объёмной массой менее 1500 кг/л3 (для получения последних используют мелкие пористые Заполнители, а также поризацию вяжущего теста). По прочности на сжатие Р. подразделяют на 9 марок - от "4" до "300" (4-300 кгс/см2, или 0,4-30 Мн/м2).

Наиболее широко применяются кладочные и отделочные Р. на минеральных вяжущих. Общая теория таких Р. впервые была разработана в СССР в 30-х гг. Н. А. Поповым. Будучи аналогичными по составу песчаным (мелкозернистым) бетонам (См. Песчаный бетон), Р. отличаются от последних повышенной пластичностью растворной смеси и, обычно, меньшей прочностью, что обусловливает специфику их применения - преимущественно в виде тонких слоев, получаемых укладкой растворной смеси на пористое основание (кирпич, дерево и др.).

Для получения Р. требуемой прочности растворная смесь должна обладать необходимой подвижностью и водоудерживающей способностью. Степень подвижности растворной смеси устанавливают по глубине погружения в неё стандартного металлического конуса (т. н. конуса СтройЦНИЛ). Водоудерживающая способность характеризуется свойством растворной смеси не расслаиваться при транспортировке и сохранять влажность при укладке (на пористое основание), необходимую для нормального процесса её твердения. С целью экономии цемента при изготовлении т. н. низкомарочных Р. и для придания растворной смеси повышенной пластичности используют ряд приёмов: добавляют к цементу малопрочные, но высокопластичные вяжущие (известь, глину); вводят в растворную смесь тонкомолотые Добавки (шлаки, золы ТЭС, песок и др.), применяют пластифицирующие поверхностно-активные добавки.

Приготовляют растворные смеси, как правило, на специализированных заводах или растворосмесительных узлах, откуда они поступают на строительные объекты. Выпускаются также сухие растворные смеси, которые перед употреблением смешивают с водой. На строительной площадке растворные смеси транспортируют к месту производства работ Растворонасосами.

В современном строительстве получают распространение Р. на смеси полимерного и минерального вяжущих (например, поливинилацетатцементные), обладающие высокой прочностью сцепления с основанием, и Р. на полимерных вяжущих (полимеррастворы), отличающиеся высокими химическими стойкостью, прочностью и декоративными качествами. Такие Р. применяют главным образом для устройства покрытий полов в общественных и промышленных зданиях.

Лит.: Строительные нормы и правила, ч. 1, разд. В, гл. 2. Вяжущие материалы неорганические и добавки для бетонов и растворов, М., 1969; Указания по приготовлению и применению строительных растворов, СН 290-64, М., 1965; Воробьев В. А., Комар А. Г., Строительные материалы, М., 1971,

К. Н. Попов.

Пересыщенный раствор         
  • Растворение поваренной соли (NaCl) в воде
ГОМОГЕННАЯ (ОДНОРОДНАЯ) СМЕСЬ, СОСТОЯЩАЯ ИЗ ЧАСТИЦ РАСТВОРЁННОГО ВЕЩЕСТВА, РАСТВОРИТЕЛЯ И ПРОДУКТОВ ИХ ВЗАИМОДЕЙСТВИЯ
Растворение; Насыщенный раствор; Концентрированный раствор; Насыщеный раствор; Ненасыщеный раствор; Ненасыщенный раствор; Пересыщенный раствор; Растворы; Растворы (химич.); Растворы неэлектролитов; Растворы электролитов; Перенасыщенный раствор

раствор, в котором растворённого вещества содержится больше, чем в насыщенном растворе (См. Насыщенный раствор) при тех же условиях (температура, давление).

Насыщенный раствор         
  • Растворение поваренной соли (NaCl) в воде
ГОМОГЕННАЯ (ОДНОРОДНАЯ) СМЕСЬ, СОСТОЯЩАЯ ИЗ ЧАСТИЦ РАСТВОРЁННОГО ВЕЩЕСТВА, РАСТВОРИТЕЛЯ И ПРОДУКТОВ ИХ ВЗАИМОДЕЙСТВИЯ
Растворение; Насыщенный раствор; Концентрированный раствор; Насыщеный раствор; Ненасыщеный раствор; Ненасыщенный раствор; Пересыщенный раствор; Растворы; Растворы (химич.); Растворы неэлектролитов; Растворы электролитов; Перенасыщенный раствор

раствор, находящийся при данных условиях (температура, давление) в устойчивом равновесии с растворённым веществом. Примеры: раствор соли в воде, в котором присутствуют кристаллы той же соли; раствор газа в воде, через которую пропускается тот же газ. Концентрация Н. р., т. е. содержание в нём растворённого вещества, называется Растворимостью последнего. В данном растворителе (См. Растворители) при данных условиях эта концентрация может быть весьма значительной для хорошо растворимых и весьма малой для труднорастворимых веществ. Раствор, содержащий меньшее количество растворённого вещества, чем это отвечает концентрации Н. р. при данных условиях, называется ненасыщенным. При охлаждении Н. р. в отсутствие кристаллов растворённого вещества Кристаллизация может не произойти и тогда получается пересыщенный раствор. Он содержит больше растворённого вещества, чем Н. р.; введение в такой раствор кристалла растворённого вещества вызывает выпадение кристаллов из раствора. О Н. р. в системах с ограниченной взаимной растворимостью компонентов см. Жидкие смеси и Твёрдые растворы.

раствор         
  • Растворение поваренной соли (NaCl) в воде
ГОМОГЕННАЯ (ОДНОРОДНАЯ) СМЕСЬ, СОСТОЯЩАЯ ИЗ ЧАСТИЦ РАСТВОРЁННОГО ВЕЩЕСТВА, РАСТВОРИТЕЛЯ И ПРОДУКТОВ ИХ ВЗАИМОДЕЙСТВИЯ
Растворение; Насыщенный раствор; Концентрированный раствор; Насыщеный раствор; Ненасыщеный раствор; Ненасыщенный раствор; Пересыщенный раствор; Растворы; Растворы (химич.); Растворы неэлектролитов; Растворы электролитов; Перенасыщенный раствор
1. м.
1) Угол, образуемый раздвинутыми концами чего-л. (ножками циркуля, лезвиями ножниц и т.п.).
2) Отверстие, образуемое при раскрытии двустворчатого окна, двери, ворот и т.п.
3) а) Одна из дверей в их сплошном ряду.
б) Помещение за такой дверью.
в) устар. Небольшое торговое помещение в ширину раскрытых дверей.
2. м.
1) Однородная жидкая смесь, полученная растворением твердого или жидкого вещества в воде или в другой жидкости.
2) Однородная смесь различных веществ.
растворение         
  • Растворение поваренной соли (NaCl) в воде
ГОМОГЕННАЯ (ОДНОРОДНАЯ) СМЕСЬ, СОСТОЯЩАЯ ИЗ ЧАСТИЦ РАСТВОРЁННОГО ВЕЩЕСТВА, РАСТВОРИТЕЛЯ И ПРОДУКТОВ ИХ ВЗАИМОДЕЙСТВИЯ
Растворение; Насыщенный раствор; Концентрированный раствор; Насыщеный раствор; Ненасыщеный раствор; Ненасыщенный раствор; Пересыщенный раствор; Растворы; Растворы (химич.); Растворы неэлектролитов; Растворы электролитов; Перенасыщенный раствор
РАСТВОР'ЕНИЕ, растворения, мн. нет, ср. (спец.). Действие по гл. растворить
2-растворять
2. При растворении тел иногда происходит заметное выделение тепла.

Википедия

Подземное хранение газа

Подземное хранение газа — технологический процесс закачки, отбора и хранения газа в пластах-коллекторах и выработках-ёмкостях, созданных в каменной соли и в других горных породах.

Подземное хранилище газа (ПХГ) — это комплекс инженерно-технических сооружений в пластах-коллекторах геологических структур, горных выработках, а также в выработках-ёмкостях, созданных в отложениях каменных солей, предназначенных для закачки, хранения и последующего отбора газа, который включает участок недр, ограниченный горным отводом, фонд скважин различного назначения, системы сбора и подготовки газа, компрессорные цеха.

Подземные хранилища газа сооружаются вблизи трассы магистральных газопроводов и крупных газопотребляющих центров для возможности оперативного покрытия пиковых расходов газа. Они создаются и используются с целью компенсации неравномерности (сезонной, недельной, суточной) газопотребления, а также для резервирования газа на случай аварий на газопроводах и для создания стратегических запасов газа.

В настоящее время наибольшее распространение получили ПХГ, созданные в пористых пластах (истощённые месторождения и водоносные структуры). Кроме пористых пластов пригодны для создания хранилищ и залежи каменных солей (создаваемые путём размыва так называемой каверны), а также в горных выработках залежей каменного угля и других полезных ископаемых.

Всего в мире действует более 600 подземных хранилищ газа общей активной ёмкостью порядка 340 млрд м³.

Наибольший объём резерва газа хранится в ПХГ, созданных на базе истощённых газовых и газоконденсатных месторождений. Менее ёмкими хранилищами являются соляные каверны, есть также единичные случаи создания ПХГ в кавернах твёрдых пород.