Потенциальное поле - определение. Что такое Потенциальное поле
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Потенциальное поле - определение

ВЕКТОРНОЕ ПОЛЕ, ПРЕДСТАВЛЯЕМОЕ КАК ГРАДИЕНТ НЕКОТОРОЙ ФУНКЦИИ
Потенциальное поле; Градиентное поле; Безвихревое векторное поле
Найдено результатов: 217
Потенциальное поле         

консервативное поле, векторное поле, циркуляция которого вдоль любой замкнутой траектории равна нулю. Если П. п. - силовое поле, то это означает равенство нулю работы сил поля вдоль замкнутой траектории. Для П. п. а (М) существует такая однозначная функция u (М) (Потенциал поля), что а = gradu (см. Градиент). Если П. п. задано в односвязной области Ω, то потенциал этого поля может быть найден по формуле

,

в которой AM - любая гладкая кривая, соединяющая фиксированную точку А из Ω с точкой М, t - единичный вектор касательной кривой AM и / - длина дуги AM, отсчитываемая от точки А. Если а (М) - П. п., то rot a = 0 (см. Вихрь векторного поля). Обратно, если rot а = 0 и поле задано в односвязной области и дифференцируемо, то а (М) - П. п. Потенциальными являются, например, электростатическое поле, поле тяготения, поле скоростей при безвихревом движении.

Потенциальное векторное поле         
Потенциальное (или безвихревое) векторное поле в математике — векторное поле, которое можно представить как градиент некоторой скалярной функции координат. Необходимым условием потенциальности векторного поля в трёхмерном пространстве является равенство нулю ротора поля.
Поле Хиггса         
ПОЛЕ, ОБЕСПЕЧИВАЮЩЕЕ СПОНТАННОЕ НАРУШЕНИЕ СИММЕТРИИ ЭЛЕКТРОСЛАБЫХ ВЗАИМОДЕЙСТВИЙ
Хиггсовское поле; Хиггса поле; Поля Хиггса
По́ле Хи́ггса, или хи́ггсовское по́ле, — поле, обеспечивающее спонтанное нарушение симметрии электрослабых взаимодействий благодаря нарушению симметрии вакуума, названо по имени разработчика его теории, британского физика Питера Хиггса. Квант этого поля — хиггсовская частица (хиггсовский бозон).
Поле класса         
Поле объекта
По́ле кла́сса или атрибу́т (переменная-член, data member, class field, instance variable) в объектно-ориентированном программировании — переменная, описание которой создает программист при создании класса. Все данные объекта хранятся в его полях.
Поля физические         
ФИЗИЧЕСКАЯ АБСТРАКЦИЯ
Физическое поле; Поля физические; Фундаментальные поля; Физические поля

особая форма материи; физическая система, обладающая бесконечно большим числом степеней свободы. Примерами П. ф. могут служить электромагнитное и гравитационное поля, поле ядерных сил, а также волновые (квантованные) поля, соответствующие различным частицам.

Впервые (30-е гг. 19 в.) понятие поля (электрического и магнитного) было введено М. Фарадеем (См. Фарадей). Концепция поля была принята им как альтернатива теории дальнодействия, т. е. взаимодействия частиц на расстоянии без какого-либо промежуточного агента (так интерпретировалось, например, электростатическое взаимодействие заряженных частиц по закону Кулона или гравитационное взаимодействие тел по закону всемирного тяготения Ньютона). Концепция поля явилась возрождением теории близкодействия, основоположником которой был Р. Декарт (1-я половина 17 в.). В 60-х гг. 19 в. Дж. К. Максвелл развил идею Фарадея об электромагнитном поле (См. Электромагнитное поле) и сформулировал математически его законы (см. Максвелла уравнения).

Согласно концепции поля, частицы, участвующие в каком-либо взаимодействии (например, электромагнитном или гравитационном), создают в каждой точке окружающего их пространства особое состояние - поле сил, проявляющееся в силовом воздействии на др. частицы, помещаемые в какую-либо точку этого пространства. Первоначально выдвигалась механистическая интерпретация поля как упругих напряжений гипотетической среды - "эфира". Однако наделение "эфира" свойствами упругой среды оказалось в резком противоречии с результатами проведённых позднее опытов. С точки зрения современных представлений, такая механистическая интерпретация поля вообще бессмысленна, поскольку сами упругие свойства макроскопических тел полностью объясняются электромагнитными взаимодействиями частиц, из которых состоят эти тела. Теория относительности, отвергнув концепцию "эфира" как особой упругой среды, вместе с тем придала фундаментальный смысл понятию П. ф. как первичной физической реальности. Действительно, согласно теории относительности, скорость распространения любого взаимодействия не может превышать скорости света в вакууме. Поэтому в системе взаимодействующих частиц сила, действующая в данный момент времени на какую-либо частицу системы, не определяется расположением др. частиц в этот же момент времени, т. е. изменение положения одной частицы сказывается на др. частице не сразу, а через определённый промежуток времени. Т. о., взаимодействие частиц, относительная скорость которых сравнима со скоростью света, можно описывать только через создаваемые ими поля. Изменение состояния (или положения) одной из частиц приводит к изменению создаваемого ею поля, которое отражается на др. частице лишь через конечный промежуток времени, необходимый для распространения этого изменения до частицы.

П. ф. не только осуществляют взаимодействие между частицами; могут существовать и проявляться свободные П. ф. независимо от создавших их частиц (например, Электромагнитные волны). Поэтому ясно, что П. ф. следует рассматривать как особую форму материи.

Каждому типу взаимодействий в природе отвечают определённые П. ф. Описание П. ф. в классической (не квантовой) теории поля производится с помощью одной или нескольких (непрерывных) функций поля, зависящих от координаты точки (х, у, z), в которой рассматривается поле, и от времени (t). Так, электромагнитное поле может быть полностью описано с помощью четырёх функций: скалярного потенциала φ(х, у, z, t) и вектор-потенциала А (х, у, z, t), которые вместе составляют единый четырёхмерный вектор в пространстве-времени. Напряжённости электрического и магнитного полей выражаются через производные этих функций. В общем случае число независимых полевых функций определяется числом внутренних степеней свободы частиц, соответствующих данному полю (см. ниже), например их Спином, изотопическим спином (См. Изотопический спин) и т.д. Исходя из общих принципов - требований релятивистской инвариантности (См. Релятивистская инвариантность) и некоторых более частных предположений (например, для электромагнитного поля - Суперпозиции принципа и т. н. градиентной инвариантности), можно из функций поля составить выражение для действия (См. Действие) и с помощью Наименьшего действия принципа (см. также Вариационные принципы механики) получить дифференциальные уравнения, определяющие поле. Значения функций поля в каждой отдельной точке можно рассматривать как Обобщённые координаты П. ф. Следовательно, П. ф. представляется как физическая система с бесконечным числом степеней свободы. По общим правилам механики можно получить выражение для обобщённых импульсов (См. Обобщённые импульсы) П. ф. и найти плотности энергии, импульса и момента количества движения поля.

Опыт показал (сначала для электромагнитного поля), что энергия и импульс поля изменяются дискретным образом, т. е. П. ф. можно поставить в соответствие определённые частицы (например, электромагнитному полю - Фотоны, гравитационному - Гравитоны). Это означает, что описание П. ф. с помощью полевых функций является лишь приближением, имеющим определённую область применимости. Чтобы учесть дискретные свойства П. ф. (т. е. построить квантовую теорию поля), необходимо считать обобщённые координаты и импульсы П. ф. не числами, а Операторами, для которых выполняются определённые Перестановочные соотношения. (Аналогично осуществляется переход от классической механики к квантовой механике (См. Квантовая механика).)

В квантовой механике доказывается, что систему взаимодействующих частиц можно описать с помощью некоторого квантового поля (см. Квантование вторичное). Т. о., не только каждому П. ф. соответствуют определённые частицы, но и, наоборот, всем известным частицам соответствуют квантованные поля. Этот факт является одним из проявлений корпускулярно-волнового дуализма (См. Корпускулярно-волновой дуализм) материи. Квантованные поля описывают уничтожение (или рождение) частиц и одновременно рождение (уничтожение) античастиц (См. Античастицы). Таким полем является, например, электрон-позитронное поле в квантовой электродинамике.

Вид перестановочных соотношений для операторов поля зависит от сорта частиц, соответствующих данному полю. Как показал В. Паули (1940), для частиц с целым спином операторы поля коммутируют и указанные частицы подчиняются Бозе-Эйнштейна статистике (См. Бозе - Эйнштейна статистика), в то время как для частиц с полуцелым спином они антикоммутируют и соответствующие частицы подчиняются Ферми-Дирака статистике (См. Ферми - Дирака статистика). Если частицы подчиняются статистике Бозе-Эйнштейна (например, фотоны и гравитоны), то в одном и том же квантовом состоянии может находиться много (в пределе - бесконечно много) частиц. В указанном пределе средние величины квантованных полей переходят в обычные классические поля (например, в классические электромагнитное и гравитационное поля, описываемые непрерывными функциями координат и времени). Для полей, отвечающих частицам с полуцелым спином, не существует соответствующих классических полей.

Современная теория элементарных частиц строится как теория взаимодействующих квантовых П. ф. (электрон-позитронного, фотонного, мезонного и др.).

Лит.: Ландау Л. Д., Лифшиц Е. М., Теория поля. 6 изд., М., 1973 (Теоретическая физика, т, 2); Боголюбов Н. Н., Ширков Д. В., Введение в теорию квантованных полей, 2 изд., М., 1974.

С. С. Герштейн.

Соленоидальное поле         
Соленоидальность; Соленоидальное поле; Вихревое поле; Бездивергентное векторное поле

векторное поле, не имеющее источников. Это означает, что Дивергенция вектора а С. п. равна нулю: div а = 0. Примером С. п. служит Магнитное поле, div В = 0, где В - вектор магнитной индукции (См. Магнитная индукция). С. п. можно всегда представить в виде а = rot b, здесь дифференциальный оператор rot - Вихрь (ротор), а вектор b называется векторным потенциалом поля. См. также Векторное исчисление.

Беличье поле         
Беличье Поле
Бе́личье по́ле () — историческая местность Киева, урочище. Расположена в Подольском районе вдоль Белицкой улицы (получила название от названия местности).
Поле Киллинга         
Векторное поле Киллинга; Вектор Киллинга; Киллингово поле
По́ле Ки́ллинга (в теории относительности часто просто ве́ктор Ки́ллинга) — векторное поле скоростей (локальной) однопараметрической группы движений риманова или псевдориманова многообразия.
МАРСОВО ПОЛЕ         
СТРАНИЦА ЗНАЧЕНИЙ
Марсово Поле; Улица Марсово поле
в Др. Риме низменность на левом берегу Тибра, за чертой города, где устраивались военные смотры в честь бога войны Марса (отсюда название Марсово поле), а затем проходили народные собрания.
---
площадь в Санкт-Петербурге. В ансамбле Марсова поля: Мраморный дворец (1768-85), Павловские казармы (1817-20), Инженерный замок (1797-1800), Летний и Михайловский сады. Площадь получила название в нач. 19 в., когда стала местом военных парадов. На Марсовом поле в 1917 погребены участники Февральской революции, в 1918-1919 - участники Гражданской войны. В 1917-19 сооружен памятник "Борцам революции". В 1957 зажжен Вечный огонь.
Марсово поле         
СТРАНИЦА ЗНАЧЕНИЙ
Марсово Поле; Улица Марсово поле
I Ма́рсово по́ле (Campus Martius, Ager Martius)

в Древнем Риме большая низменность на левом берегу Тибра, за городской чертой, где проходили народные собрания - центуриатные комиции. Название М. п. получило в честь бога войны Марса, так как здесь первоначально устраивались военные смотры, состязания и находился алтарь Марса.

По аналогии с М. п. в Древнем Риме названы площади в некоторых других городах (М. п. в Париже, М. п. в Ленинграде), служившие местом военных упражнений и парадов.

II Ма́рсово по́ле

площадь в Ленинграде, важное звено в планировочной системе центра города. В ансамбль М. п. входят: Мраморный дворец (ныне Ленинградский филиал Центрального музея В. И. Ленина; 1768-1785, архитектор А. Ринальди) и Павловские казармы (ныне здание "Ленэнерго"; 1817-1820, архитектор В. П. Стасов), а также примыкающие к М. п. Инженерный замок, Летний сад и Михайловский сад. В начале 18 века на месте М. п. был "Большой луг", предназначенный для празднеств. Во 2-й половине 18 века площадь названа "Царицынским лугом", а с 1818 она получила наименование М. п. (по аналогии с М. п. в античном Риме), так как на нём проводились военные парады и были сооружены памятники полководцам П. А. Румянцеву (так называемый Румянцевский обелиск; мрамор, гранит, 1798-1799, архитектор В. Ф. Бренна, с 1818 на Васильевском острове) и А. В. Суворову (бронза, гранит, 1799-1801, скульптор М. И. Козловский). 23 марта (5 апреля) 1917 в центре М. п. в братской могиле было погребено 180 человек, погибших в вооружённой борьбе против самодержавия в дни Февральской революции 1917. На М. п. 18 апреля (1 мая) 1917 выступал В. И. Ленин. В июне 1917 М. п. стало центром крупной демонстрации рабочих и солдат против антинародной политики Временного правительства (см. Июньский кризис 1917). В 1918 на М. п. были погребены В. Володарский, М. С. Урицкий; петроградские рабочие, павшие во время Ярославского мятежа 1918 (См. Ярославский мятеж); в 1919- участники героической обороны Петрограда от войск генерала Н. Н. Юденича и других. В 1917-1919 в центре М. п. установлен памятник "Борцам революции" (гранит, Л. В. Руднев, автор надписей А. В. Луначарский), в 1920-1923 на всей его территории разбит партерный сад (И. А. Фомин); в 1957 зажжён вечный огонь. Современный мемориальный комплекс, отличающийся выразительным лаконизмом форм, органически вошёл в исторически сложившийся ансамбль классицистической архитектуры.

Лит.: Смирнов Н. И., Марсово поле, Л. - М., 1947; Слобожан И. И., Марсово поле, Л., 1963.

Памятник А. В. Суворову в Ленинграде. Бронза. 1799-1801.

Марсово поле в Ленинграде. Памятник "Борцам революции". Гранит. 1917-19. Арх. Л. В. Руднев, автор надписей А. В. Луначарский.

Марсово поле в Ленинграде. Современный вид.

Википедия

Потенциальное векторное поле

Потенциальное (или безвихревое) векторное поле в математике — векторное поле, которое можно представить как градиент некоторой скалярной функции координат. Необходимым условием потенциальности векторного поля в трёхмерном пространстве является равенство нулю ротора поля. Однако это условие не является достаточным — если рассматриваемая область пространства не является односвязной, то скалярный потенциал может быть многозначной функцией.

В физике, имеющей дело с силовыми полями, математическое условие потенциальности силового поля можно представить как требование равенства нулю работы при мгновенном перемещении частицы, на которую действует поле, по замкнутому контуру. Этот контур не обязан быть траекторией частицы, движущейся под действием только данных сил. В качестве потенциала поля в этом случае можно выбрать работу по мгновенному перемещению пробной частицы из некоторой произвольно выбранной исходной точки в заданную точку (по определению эта работа не зависит от пути перемещения). Например, потенциальными являются статическое электрическое поле, а также гравитационное поле в ньютоновой теории гравитации.

В некоторых источниках потенциальным полем сил считается только поле с потенциалом, не зависящим от времени. Это связано с тем, что потенциал для сил, зависящий от времени, вообще говоря, не является потенциальной энергией тела, движущегося под действием этих сил. Поскольку силы совершают работу не одномоментно, работа сил над телом будет зависеть от его траектории и от скорости прохождения по ней. В этих условиях сама потенциальная энергия не определена, так как по определению должна зависеть только от положения тела, но не от пути. Тем не менее, и для этого случая потенциал для сил может существовать, и может входить в уравнения движения так же, как и потенциальная энергия для тех случаев, когда она существует.

Пусть v {\displaystyle {\vec {v}}}  — потенциальное векторное поле; оно выражается через потенциал ϕ {\displaystyle \phi } как

v = ϕ {\displaystyle {\vec {v}}=\nabla \phi } (или в другой записи v = grad ϕ {\displaystyle {\vec {v}}=\operatorname {grad} \phi } ).

Для поля сил и потенциала сил эта же формула записывается как

F ( r , t ) = U ( r , t ) {\displaystyle {\vec {F}}({\vec {r}},t)=-\nabla U({\vec {r}},t)} ,

то есть для сил потенциалом ϕ {\displaystyle \phi } является U {\displaystyle -U} . Когда U {\displaystyle U} не зависит от времени, оно является потенциальной энергией, и тогда знак «-» возникает просто по определению. В противном случае знак сохраняется ради единообразия.

Для поля ϕ {\displaystyle \phi } выполняется свойство независимости интеграла от пути P {\displaystyle P} :

P v d r = ϕ ( B ) ϕ ( A ) {\displaystyle \int _{P}{\vec {v}}\cdot d{\vec {r}}=\phi (B)-\phi (A)} ,

Это равносильно

v d r = 0 {\displaystyle \oint {\vec {v}}\cdot d{\vec {r}}=0} .

Интеграл по замкнутому контуру обращается в 0, поскольку начальная и конечная точка совпадают. И наоборот, предыдущую формулу можно вывести из этой, если разбить замкнутый контур на два незамкнутых.

Необходимое условие записывается как × v = 0 {\displaystyle \nabla \times {\vec {v}}=0} (или в другой записи rot v = 0 {\displaystyle \operatorname {rot} {\vec {v}}=0} ).

На языке дифференциальных форм потенциальное поле — это точная 1-форма — то есть форма, которая является (внешним) дифференциалом 0-формы (функции). Градиенту соответствует взятие внешнего дифференциала от 0-формы (потенциала), ротору соответствует взятие внешнего дифференциала от 1-формы (поля). Необходимое условие следует из того, что второй внешний дифференциал всегда равен нулю: d 2 = 0 {\displaystyle d^{2}=0} . Интегральные формулы следуют из (обобщённой) теоремы Стокса.