Радиационные дефекты в кристаллах - определение. Что такое Радиационные дефекты в кристаллах
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Радиационные дефекты в кристаллах - определение

Дефекты кристаллической решётки; Точечные дефекты; Нульмерные дефекты; Точечный дефект; Кристаллографический дефект; Дефекты
  • Граница наклона
Найдено результатов: 10931
Радиационные дефекты в кристаллах      

структурные повреждения, образующиеся при облучении кристаллов потоками ядерных частиц и жёстким электромагнитным (гамма- и рентгеновским) излучением. Структурные микроповреждения вызывают изменения механических и др. физических свойств кристаллов. Восстановление их свойств, т. е. уничтожение Р. д. в к., осуществляется при нагревании. Изучение Р. д. в к. началось в середине 40-х гг. с развитием реакторной техники. Впервые на возможность разрушения кристаллической решётки вследствие смещения атомов из их равновесных положений при взаимодействии с быстрыми нейтронами и осколками деления ядер указал Ю. Вигнер в 1942. Тогда же было высказано предположение о том, что такие смещения атомов должны сказываться на свойствах материалов.

Различают простые и сложные Р. д. в к. Простейшими являются междоузельный атом и Вакансия (см. Дефекты в кристаллах). Такая пара образуется, когда ядерная частица сообщает атому, находящемуся в узле кристаллической решётки, энергию выше некоторой пороговой. Величина E0 зависит от вещества и равна нескольким десяткам эв. Этой энергии достаточно для разрыва межатомных связей и удаления атома на некоторое расстояние от узла кристаллической решётки. И вакансия, и междоузельный атом обладают высокой подвижностью даже при комнатной температуре. Встретившись в процессе миграции по кристаллу, они могут рекомбинировать, выйти на поверхность кристалла либо "закрепиться" на дефектах нерадиационного происхождения (примесных атомах, дислокациях (См. Дислокации), границах зёрен, микротрещинах и т.д.). Если энергия, приобретённая атомом, превышает в несколько десятков или сотен раз E0, то первично смещенный атом, взаимодействуя с "окружением", вызывает при движении по кристаллу каскад вторичных смещений.

В результате слияния простых Р. д. в к. могут образоваться их скопления. Образование скоплений наиболее вероятно в тех случаях, когда облучение производится частицами высоких энергий, порождающими каскадные процессы. При этом даже небольшие первичные скопления могут служить "зародышами", на которых происходит накопление (конденсация) простых дефектов. Рост вакансионных скоплений превращает их в поры. Однако этот процесс не может происходить непрерывно: с одной стороны, он ограничен относительным уменьшением поверхности конденсации вакансий, с другой - условиями теплового равновесия. В металлах сферические поры неустойчивы, они сдавливаются в плоскости одного из наиболее плотных атомных слоев кристалла и образуют кольцевые дислокации.

Наиболее полную информацию о Р. д. в к. можно получить, если облучать материалы при очень низкой температуре (вплоть до нескольких К). Образовавшиеся Р. д. в к. как бы "замораживаются", процесс их миграции по кристаллу максимально замедляется. При последующем постепенном нагревании часто наблюдается ступенчатая картина восстановления исследуемых свойств материала. Исследование характера и скорости восстановления свойств во времени при температуре наиболее резкого их изменения на границе соседних ступеней (изотермический отжиг) позволяет определить энергию активации движения Р. д. в к. и особенности их превращений. Р. д. в к. наблюдают и непосредственно, например с помощью электронных микроскопов (См. Электронный микроскоп) и ионных проекторов (См. Ионный проектор).

Исследование Р. д. в к. имеет большое практическое значение. Различные Конструкционные материалы и делящиеся вещества в ядерных реакторах (См. Ядерный реактор), материалы, находящиеся на борту космических объектов в радиационных поясах Земли (См. Радиационные пояса Земли), подвергаются воздействию потоков нейтронов, протонов, электронов и γ-квантов. Знание типа образующихся Р. д. в к., их превращений и термической стабильности, а также влияния Р. д. в к. на свойства материалов позволяют прогнозировать работу последних под воздействием облучения, открывает пути создания радиационно-стойких материалов.

Лит.: Конобеевский С. Т., Действие облучения на материалы, М., 1967; Вавилов В. С., Ухин Н. А., Радиационные эффекты в полупроводниках и полупроводниковых приборах, М., 1969; Томпсон М., Дефекты и радиационные повреждения в металлах, пер. с англ., М., 1971.

Н. А. Ухин.

ДЕФЕКТЫ         
в кристаллах , нарушения строгой периодичности расположения частиц в кристаллической решетке. Различают точечные дефекты (вакансии, межузельные атомы), одномерные (дислокации) и двумерные (поверхности, границы кристаллических зерен и двойников). Дефекты возникают как в процессе кристаллизации, так и в результате внешних воздействий на кристалл. С дефектами связаны многие свойства кристаллов.
Изоморфизм (кристаллохимия)         
СВОЙСТВО ЭЛЕМЕНТОВ ЗАМЕЩАТЬ ДРУГ ДРУГА В СТРУКТУРЕ КРИСТАЛЛА
Изоморфизм в кристаллах; Изоморфизм кристаллов; Изоморфизм (химия); Изовалентный изоморфизм; Гетеровалентный изоморфизм; Изовалентное замещение; Гетеровалентное замещение
Изоморфизм (от  — «равный, одинаковый, подобный» и  — «форма») — свойство элементов замещать друг друга в структуре кристалла. Изоморфизм возможен при одинаковых координационных числах атомов, а в ковалентных соединениях при тождественной конфигурации связей.
радиационные пояса земли         
  • Юпитера]]: яркие области (белые) — радиоизлучение радиационных поясов
  • Схема внутреннего и внешнего радиационных поясов
области околоземного пространства, характеризующиеся повышенной плотностью потоков заряженных частиц, обусловленной удержанием их магнитным полем Земли; длительное пребывание в Р. п. 3. при полетах в околоземном пространстве может вызвать радиационные поражения. радиация (лат. radio, radiatum излучать) - см. Излучение1.
РАДИАЦИОННЫЕ ПОЯСА         
  • Юпитера]]: яркие области (белые) — радиоизлучение радиационных поясов
  • Схема внутреннего и внешнего радиационных поясов
планет , внутренние области планетных магнитосфер, в которых собственное магнитное поле планеты удерживает заряженные частицы (протоны, электроны), обладающие большой кинетической энергией. В радиационных поясах частицы под действием магнитного поля движутся по сложным траекториям из Северного полушария в Южное и обратно. У Земли обычно выделяют внутренний и внешний радиационные пояса. Внутренний радиационный пояс Земли имеет максимальную плотность частиц (преимущественно протонов) над экватором на высоте 3-4 тыс. км, внешний электронный радиационный пояс - на высоте ок. 22 тыс. км. Радиационный пояс - источник радиационной опасности при космических полетах. Мощными радиационными поясами обладают Юпитер и Сатурн.
Радиационные пояса Земли         
  • Юпитера]]: яркие области (белые) — радиоизлучение радиационных поясов
  • Схема внутреннего и внешнего радиационных поясов

внутренние области земной магнитосферы, в которых магнитное поле Земли удерживает заряженные частицы (Протоны, Электроны, Альфа-частицы), обладающие кинетической энергией от десятков кэв до сотен Мэв (в разных областях Р. п. З. энергия частиц различна, см. ст. Земля, раздел Строение Земли). Выходу заряженных частиц из Р. п. З. мешает особая конфигурация силовых линий геомагнитного поля, создающего для заряженных частиц магнитную ловушку (См. Магнитные ловушки). Захваченные в магнитную ловушку Земли частицы под действием Лоренца силы (См. Лоренца сила) совершают сложное движение, которое можно представить как колебательное движение по спиральной траектории вдоль силовой линии магнитного поля из Северного полушария в Южное и обратно с одновременным более медленным перемещением (долготным дрейфом) вокруг Земли (рис. 1). Когда частица движется по спирали в сторону увеличения магнитного поля (приближаясь к Земле), радиус спирали и её шаг уменьшаются. Вектор скорости частицы, оставаясь неизменным по величине, приближается к плоскости, перпендикулярной направлению поля. Наконец, в некоторой точке (её называют зеркальной) происходит "отражение" частицы. Она начинает двигаться в обратном направлении - к сопряжённой зеркальной точке в др. полушарии. Одно колебание вдоль силовой линии из Северного полушария в Южное протон с энергией Радиационные пояса Земли 100 Мэв совершает за время Радиационные пояса Земли 0,3 сек. Время нахождения ("жизни") такого протона в геомагнитной ловушке может достигать 100 лет (Радиационные пояса Земли 3․109 сек), за это время он может совершить до 1010 колебаний. В среднем захваченные частицы большой энергии совершают до нескольких сотен миллионов колебаний из одного полушария в другое. Долготный дрейф происходит со значительно меньшей скоростью. В зависимости от энергии частицы совершают полный оборот вокруг Земли за время от нескольких минут до суток. Положительные ионы дрейфуют в западном направлении, электроны - в восточном. Движение частицы по спирали вокруг силовой линии магнитного поля можно представить как состоящее из вращения около т. н. мгновенного центра вращения и поступательного перемещения этого центра вдоль силовой линии.

Структура радиационных поясов. При движении заряженной частицы в магнитном поле Земли её мгновенный центр вращения находится на одной и той же поверхности, получившей название магнитной оболочки (рис. 2). Магнитную оболочку характеризуют параметром L, его численное значение в случае дипольного поля (см. Диполь) равно расстоянию, выраженному в радиусах Земли, на которое отходит магнитная оболочка (в экваториальной плоскости диполя) от центра диполя. Для реального магнитного поля Земли (см. Земной магнетизм) параметр L приближённо сохраняет такой же простой смысл. Энергия частиц связана со значением параметра L; на оболочках с меньшими значениями L находятся частицы, обладающие большими энергиями. Это объясняется тем, что частицы высоких энергий могут быть удержаны лишь сильным магнитным полем, т. е. во внутренних областях магнитосферы. Обычно выделяют внутренний и внешний Р. п. 3., пояс протонов малых энергий (пояс кольцевого тока) и зону квазизахвата частиц (рис. 3), или авроральной радиации (по лат. названию полярных сияний). Внутренний радиационный пояс характеризуется наличием протонов высоких энергий (от 20 до 800 Мэв) с максимумом плотности потока протонов с энергией Ep > 20 Мэв до 104 протон/(см2секстер) на расстоянии L Радиационные пояса Земли 1,5. Во внутреннем поясе присутствуют также электроны с энергиями от 20-40 кэв до 1 Мэв; плотность потока электронов с Ee 40 кэв составляет в максимуме Радиационные пояса Земли 106-107 электрон/(см2сек․стер).

Внутренний пояс расположен вокруг Земли в экваториальных широтах (рис. 4).

С внешней стороны этот пояс ограничен магнитной оболочкой с L Радиационные пояса Земли 2, которая пересекается с поверхностью Земли на геомагнитных широтах Радиационные пояса Земли 45°. Ближе всего к поверхности Земли (на высоты до 200-300 км) внутренний пояс подходит вблизи Бразильской магнитной аномалии, где магнитное поле сильно ослаблено; над географическим экватором нижняя граница внутреннего пояса отстоит от Земли на 600 км над Америкой и до 1600 км над Австралией. На нижней границе внутреннего пояса частицы, испытывая частые столкновения с атомами и молекулами атмосферных газов, теряют свою энергию, рассеиваются и "поглощаются" атмосферой.

Внешний Р. п. З. заключён между магнитными оболочками c L Радиационные пояса Земли 3 и L Радиационные пояса Земли 6 с максимальной плотностью потока частиц на L Радиационные пояса Земли 4,5. Для внешнего пояса характерны электроны с энергиями 40-100 кэв, поток которых в максимуме достигает 106-107 электрон/(см2сек․стер). Среднее время "жизни" частиц внешнего Р. п. З. составляет 105-107 сек. В периоды повышенной солнечной активности во внешнем поясе присутствуют также электроны больших энергий (до 1 Мэв и выше).

Пояс протонов малых энергий (Ep Радиационные пояса Земли 0,03-10 Мэв) простирается от L Радиационные пояса Земли 1,5 до L Радиационные пояса Земли 7-8. Зона квазизахвата, или авроральной радиации, расположена за внешним поясом, она имеет сложную пространственную структуру, обусловленную деформацией магнитосферы солнечным ветром (См. Солнечный ветер) (потоком заряженных частиц от Солнца). Основной составляющей частиц зоны квазизахвата являются электроны и протоны с энергиями E < 100 кэв. Внешний пояс и пояс протонов малых энергий ближе всего (до высоты 200-300 км) подходит к Земле на широтах 50-60°. На широты выше 60° проецируется зона квазизахвата, совпадающая с областью максимальной частоты появления полярных сияний (См. Полярные сияния). В некоторые периоды отмечается существование узких поясов электронов высоких энергий (Ee Радиационные пояса Земли 5 Мэв) на магнитных оболочках с L Радиационные пояса Земли 2,5-3,0.

Энергетические спектры для всех частиц Р. п. З. описываются функциями вида: N (E) Радиационные пояса Земли Eγ, где N (E) - число частиц с данной энергией E, или N (E) Радиационные пояса Земли с характерными значениями γ ≈ 1,8 для протонов в интервале энергий от 40 до 800 Мэв, E0 Радиационные пояса Земли 200-500 кэв для электронов внешних и внутренних поясов и E0 Радиационные пояса Земли 100 кэв для протонов малых энергий.

История открытия радиационных поясов. Исторически первыми были открыты внутренний пояс (группой американских учёных под руководством Дж. Ван Аллена, 1958) и внешний пояс (сов. учёными во главе с С. Н. Верновым и А. Е. Чудаковым, 1958). Потоки частиц Р. п. З. были зарегистрированы приборами (Гейгера - Мюллера счётчиками), установленными на искусственных спутниках Земли. По существу, Р. п. З. не имеют четко выраженных границ, т.к. каждый тип частиц в соответствии со своей энергией образует "свой" радиационный пояс, поэтому правильнее говорить об одном едином радиационном поясе Земли. Разделение Р. п. З. на внешний и внутренний, принятое на первой стадии исследований и сохранившееся до настоящего времени из-за ряда различий в их свойствах, по существу, условно.

Принципиальная возможность существования магнитной ловушки в магнитном поле Земли была показана расчётами К. Стёрмера (1913) и Х. Альфвена (1950), но лишь эксперименты на спутниках показали, что ловушка реально существует и заполнена частицами высоких энергий.

Пополнение радиационных поясов Земли частицами и механизм потери частиц. Происхождение захваченных частиц с энергией, значительно превышающей среднюю энергию теплового движения атомов и молекул атмосферы, связывают с действием нескольких физических механизмов: распадом Нейтронов, созданных космическими лучами (См. Космические лучи) в атмосфере Земли (образующиеся при этом протоны пополняют внутренние Р. п. З.); "накачкой" частиц в пояса во время геомагнитных возмущений (магнитных бурь (См. Магнитные бури)), которая в первую очередь обусловливает существование электронов внутреннего пояса; ускорением и медленным переносом частиц солнечного происхождения из внешнего во внутренние области магнитосферы (так пополняются электроны внешнего пояса и пояс протонов малых энергий). Проникновение частиц солнечного ветра в Р. п. З. возможно через особые точки магнитосферы (т. н. дневные полярные каспы, см. рис. 5), а также через т. н. нейтральный слой в хвосте магнитосферы (с её ночной стороны). В области дневных каспов и в нейтральном слое хвоста геомагнитное поле резко ослаблено и не является существенным препятствием для заряженных частиц межпланетной плазмы. Частично Р. п. З. пополняются также за счёт захвата протонов и электронов солнечных космических лучей, проникающих во внутренние области магнитосферы. Перечисленных источников частиц, по-видимому, достаточно для создания Р. п. З. с характерным распределением потоков частиц. В Р. п. З. существует динамическое равновесие между процессами пополнения поясов и процессами потерь частиц. В основном частицы покидают Р. п. З. из-за потери своей энергии на ионизацию (См. Ионизация) (эта причина ограничивает, например, пребывание протонов внутреннего пояса в магнитной ловушке временем τ Радиационные пояса Земли 109 сек), из-за рассеяния частиц при взаимных столкновениях и рассеяния на магнитных неоднородностях и плазменных волнах различного происхождения (см. Плазма). Рассеяние может сократить время "жизни" электронов внешнего пояса до 104-105 сек. Эти эффекты приводят к нарушению условий стационарного движения частиц в геомагнитном поле (т. н. адиабатических инвариантов) и к "высыпанию" частиц из Р. п. З. в атмосферу вдоль силовых линий магнитного поля.

Связь процессов в радиационных поясах Земли с другими процессами в околоземном пространстве. Радиационные пояса испытывают различные временные вариации: расположенный ближе к Земле и более стабильный внутренний пояс - незначительные, внешний пояс - наиболее частые и сильные. Для внутреннего Р. п. З. характерны небольшие вариации в течение 11-летнего цикла солнечной активности. Внешний пояс заметно меняет свои границы и структуру даже при незначительных возмущениях магнитосферы. Пояс протонов малых энергий занимает в этом смысле промежуточное положение. Особенно сильные вариации Р. п. З. претерпевают во время магнитных бурь (См. Магнитные бури). Сначала во внешнем поясе резко возрастает плотность потока частиц малых энергий и в то же время теряется заметная доля частиц больших энергий. Затем происходит захват и ускорение новых частиц, в результате которых в поясах появляются потоки частиц на расстояниях обычно более близких к Земле, чем в спокойных условиях. После фазы сжатия происходит медленное, постепенное возвращение Р. п. З. к исходному состоянию. В периоды высокой солнечной активности магнитные бури происходят очень часто, так что эффекты от отдельных бурь накладываются друг на друга, и максимум внешнего пояса в эти периоды располагается ближе к Земле (L Радиационные пояса Земли 3,5), чем в периоды минимума солнечной активности (L Радиационные пояса Земли 4,5-5,0).

Высыпание частиц из магнитной ловушки, в особенности из зоны квазизахвата (авроральной радиации), приводит к усилению ионизации ионосферы, а интенсивное высыпание - к полярным сияниям. Запас частиц в Р. п. З., однако, недостаточен для поддержания продолжительного полярного сияния, и связь полярных сияний с вариациями потоков частиц в Р. п. З. говорит лишь об их общей природе, т. е. о том, что во время магнитных бурь происходит как накачка частиц в Р. п. З., так и сброс их в атмосферу Земли. Полярные сияния длятся всё время, пока идут эти процессы, - иногда сутки и более. Р. п. З. могут быть созданы также искусственным образом: при взрыве ядерного устройства на больших высотах; при инжекции искусственно ускоренных частиц, например с помощью ускорителя на борту спутника; при распылении в околоземном пространстве радиоактивных веществ, продукты распада которых будут захвачены магнитным полем. Создание искусственных поясов при взрыве ядерных устройств было осуществлено в 1958 и в 1962 годах. Так, после американского ядерного взрыва (9 июля 1962) во внутренний пояс было инжектировано около 1025 электронов с энергией Радиационные пояса Земли 1 Мэв, что на два-три порядка превысило интенсивность потока электронов естественного происхождения. Остатки этих электронов наблюдались в поясах в течение почти 10-летнего периода.

Р. п. З. представляют собой серьёзную опасность при длительных полётах в околоземном пространстве. Потоки протонов малых энергий могут вывести из строя солнечные батареи (См. Солнечная батарея) и вызвать помутнение тонких оптических покрытий. Длительное пребывание во внутреннем поясе может привести к лучевому поражению (См. Лучевое поражение) живых организмов внутри космического корабля под воздействием протонов высоких энергий.

Кроме Земли, радиационные пояса существуют у Юпитера и, возможно, у Сатурна и Меркурия. Радиационные пояса Юпитера, исследованные американским космическим аппаратом "Пионер-10", имеют значительно большую протяжённость и большие энергии частиц и плотности потоков частиц, чем Р. п. З. Радиационные пояса Сатурна обнаружены радиоастрономическими методами. Советские и американские космические аппараты показали, что Венера, Марс и Луна радиационных поясов не имеют. Магнитное поле Меркурия обнаружено американской космической станцией "Маринер-10" при пролёте вблизи планеты. Это делает возможным существование у Меркурия радиационного пояса.

Лит.: Вернов С. Н., Вакулов П. В., Логачев Ю. И., Радиационные пояса Земли, в сборнике: Успехи СССР в исследовании космического пространства, М., 1968, с. 106; Космическая физика, пер. с англ., М., 1966; Тверской Б. А., Динамика радиационных поясов Земли, М., 1968; Редерер Х., Динамика радиации, захваченной геомагнитным полем, пер. с англ., М., 1972; Хесс В., Радиационный пояс и магнитосфера, пер. с англ., М., 1972; Шабанский В. П., Явления в околоземном пространстве, М., 1972; Гальперин Ю. И., Горн Л. С., Хазанов Б. И., Измерение радиации в космосе, М., 1972.

Ю. И. Логачев.

Рис. 1. Движение заряженных частиц, захваченных в геомагнитную ловушку. Частицы движутся по спирали вдоль силовой линии магнитного поля Земли и одновременно дрейфуют по долготе.

Рис. 2. Поверхность, описываемая частицей (электроном) радиационного пояса; основной характеристикой поверхности является параметр L; N и S - магнитные полюсы Земли.

Рис. 3. Структура радиационных поясов Земли (сечение соответствует полуденному меридиану): I - внутренний пояс: II - пояс протонов малых энергий; III - внешний пояс; IV - зона квазизахвата.

Рис. 4. Распределение плотности потоков протонов различных энергий над геомагнитным экватором. Кривые соответствуют потокам протонов с энергией выше указанной: 1 - Еp > 1Мэв; 2 - Еp > 1,6 Мэв; 3 - Еp > 5 Мэв; 4 - Еp > 9 Мэв; 5 - Еp > 30 Мэв.

Рис. 5. Разрез магнитосферы Земли по полуденному меридиану для случая, когда ось земного магнитного диполя перпендикулярна направлению на Солнце. Стрелками указаны области, через которые частицы солнечного ветра проникают в магнитосферу.

Радиационный пояс         
  • Юпитера]]: яркие области (белые) — радиоизлучение радиационных поясов
  • Схема внутреннего и внешнего радиационных поясов
Радиацио́нный по́яс — область магнитосфер планет, в которой накапливаются и удерживаются проникшие в магнитосферу высокоэнергичные заряженные частицы (в основном протоны и электроны).
цыкание         
НАРУШЕНИЕ ЗВУКОПРОИЗНОШЕНИЯ
Шепелявость; Картавость; Цыкание; Дефекты речи; Дефект речи; Речевой дефект; Речевые дефекты
ср.
Процесс действия по знач. глаг.: цыкать.
картавость         
НАРУШЕНИЕ ЗВУКОПРОИЗНОШЕНИЯ
Шепелявость; Картавость; Цыкание; Дефекты речи; Дефект речи; Речевой дефект; Речевые дефекты
нарушение артикуляции при произнесении звука P", характеризующееся вибрацией язычка или всего края мягкого неба.
Дислалия         
НАРУШЕНИЕ ЗВУКОПРОИЗНОШЕНИЯ
Шепелявость; Картавость; Цыкание; Дефекты речи; Дефект речи; Речевой дефект; Речевые дефекты
Дислали́я ( — приставка, отрицающая положительный смысл слова + «речь») — нарушение звукопроизношения при нормальном слухе и сохранной иннервации артикуляционного аппарата.

Википедия

Дефекты кристалла

Дефектами кристалла называют всякое устойчивое нарушение трансляционной симметрии кристалла — идеальной периодичности кристаллической решётки. По числу измерений, в которых размеры дефекта существенно превышают межатомное расстояние, дефекты делят на нульмерные (точечные), одномерные (линейные), двумерные (плоские) и трёхмерные (объёмные) дефекты.

Что такое Радиаци<font color="red">о</font>нные деф<font color="red">е</font>кты в крист<font color=