Самосопряжённое дифференциальное уравнение - определение. Что такое Самосопряжённое дифференциальное уравнение
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Самосопряжённое дифференциальное уравнение - определение

Интегро-дифференциальное уравнение
Найдено результатов: 261
Самосопряжённое дифференциальное уравнение      

уравнение, имеющее те же решения, что и сопряжённое с ним (см. Сопряжённые дифференциальные уравнения). Обыкновенное С. д. у. чётного порядка 2m имеет вид

,

а нечётного порядка 2m - 1 имеет вид

,

где Ai - функции от x. Понятие С. д. у. играет большую роль в теории дифференциальных уравнений, обыкновенных и с частными производными. При некоторых краевых условиях левая часть С. д. у. определяет самосопряжённый дифференциальный оператор. Наиболее важны в приложениях С. д. у. второго порядка.

ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ         
уравнение, содержащее неизвестную функцию под знаком интеграла и под знаком производной (или дифференциала).
Интегро-дифференциальные уравнения         

уравнения, содержащие неизвестную функцию под знаком интеграла и под знаком производной. Например, уравнение, полученное итальянским математиком В. Вольтерра в задаче о крутильных колебаниях:

Иногда И.-д. у. можно свести к интегральным уравнениям (См. Интегральные уравнения) или дифференциальным уравнениям (См. Дифференциальные уравнения). Решение И.-д. у. можно искать по методу последовательных приближений.

Интегро-дифференциальные уравнения         
Интегро-дифференциальные уравнения — класс уравнений, в которых неизвестная функция содержится как под знаком интеграла, так и под знаком дифференциала или производной.
Обыкновенное дифференциальное уравнение         
ФУНКЦИОНАЛЬНЫЕ УРАВНЕНИЯ, СОДЕРЖАЩИЕ ПРОИЗВОДНЫЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ
Обыкновенные дифференциальные уравнения; Система обыкновенных дифференциальных уравнений; Биномиальное дифференциальное уравнение; Дифференциальное уравнение обыкновенное; Система дифференциальных уравнений
Обыкновенное дифференциальное уравне́ние (ОДУ) — дифференциальное уравнение для функции от одной переменной. (Этим оно отличается от уравнения в частных производных, где неизвестная — функция нескольких переменных.
Уравнение непрерывности         
  • Фрагмент мемуара Д’Аламбера [http://gidropraktikum.narod.ru/equations-of-hydrodynamics.htm#continuity-equation «Essai d’une nouvelle théorie de la résistance des fluides»] (1752, относится к 1749), содержащий уравнение неразрывности для стационарного осесимметрического течения сжимаемой жидкости (<math>\delta</math> — плотность, <math>p</math>, <math>q</math> — компоненты скорости в цилиндрической системе координат)
ЛОКАЛЬНАЯ ФОРМА ЗАКОНОВ СОХРАНЕНИЯ
Уравнение неразрывности; Неразрывности уравнение; Уравнение несжимаемости; Уравнение неразрывности течения
Уравне́ния непреры́вности — (сильная) локальная форма законов сохранения. Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины.
Неразрывности уравнение         
  • Фрагмент мемуара Д’Аламбера [http://gidropraktikum.narod.ru/equations-of-hydrodynamics.htm#continuity-equation «Essai d’une nouvelle théorie de la résistance des fluides»] (1752, относится к 1749), содержащий уравнение неразрывности для стационарного осесимметрического течения сжимаемой жидкости (<math>\delta</math> — плотность, <math>p</math>, <math>q</math> — компоненты скорости в цилиндрической системе координат)
ЛОКАЛЬНАЯ ФОРМА ЗАКОНОВ СОХРАНЕНИЯ
Уравнение неразрывности; Неразрывности уравнение; Уравнение несжимаемости; Уравнение неразрывности течения

в гидродинамике, одно из уравнений гидродинамики, выражающее закон сохранения массы для любого объёма движущейся жидкости (газа). В переменных Эйлера (см. Эйлера уравнения гидромеханики) Н. у. имеет вид:

где ρ - плотность жидкости, v - её скорость в данной точке, a vx, vy, vz - проекции скорости на координатные оси. Если жидкость несжимаема (ρ = const), Н. у. принимает вид:

Для установившегося одномерного течения в трубе, канале и т.п. с площадью поперечного сечения S Н. у. даёт закон постоянства расхода ρSv = const.

С. М. Тарг.

Уравнение Шрёдингера         
  • Альпбахе]]
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ИЗ КВАНТОВОЙ МЕХАНИКИ В ЧАСТНЫХ ПРОИЗВОДНЫХ
Шредингера уравнение; Шрёдингера уравнение; Уравнение Шредингера; Осцилляционная теорема
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Кинетическое уравнение Больцмана         

уравнение для функции распределения f (ν, r, t) молекул газа по скоростям ν и координатам r (в зависимости от времени t), описывающее неравновесные процессы в газах малой плотности. Функция f определяет среднее число частиц со скоростями в малом интервале от ν до νν и координатами в малом интервале от r до r + Δr (см. Кинетическая теория газов). Если функция распределения зависит только от координаты х и составляющей скорости νx, К. у. Б. имеет

.

(m - масса частицы). Скорость изменения функции распределения со временем характеризуется частной производной , второй член в уравнений, пропорциональный частной производной функции распределения по координате, учитывает изменение f в результате перемещения частиц в пространстве; третий член определяет изменение функции распределения, обусловленное действием внешних сил F. Стоящий в правой части уравнения член, характеризующий скорость изменения функции распределения за счёт столкновений частиц, зависит от f и характера сил взаимодействия между частицами и равен

Здесь f, f1 и f', f'1 - функции распределения молекул до столкновения и после столкновения соответственно, ν, ν1 - скорости молекул до столкновения, dσ=σdΩ - дифференциальное эффективное сечение рассеяния в телесный угол (в лабораторной системе координат), зависящее от закона взаимодействия молекул; для модели молекул в виде жёстких упругих сфер (радиуса R) σ =4R2cosϑ, где ϑ - угол между относительной скоростью - ν 1 сталкивающихся молекул и линией, соединяющей их центры. К. у. Б. было выведено Л. Больцманом в 1872.

Различные обобщения К. у. Б. описывают поведение электронного газа в металлах, Фононов в кристаллической решётке и т.д. (однако чаще эти уравнения называют просто кинетическими уравнениями, или уравнениями переноса). См. Кинетика физическая.

Г. Я. Мякишев

ШРЕДИНГЕРА УРАВНЕНИЕ         
  • Альпбахе]]
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ИЗ КВАНТОВОЙ МЕХАНИКИ В ЧАСТНЫХ ПРОИЗВОДНЫХ
Шредингера уравнение; Шрёдингера уравнение; Уравнение Шредингера; Осцилляционная теорема
основное уравнение нерелятивистской квантовой механики; позволяет определить возможные состояния системы, а также изменение состояния во времени. Сформулировано Э. Шредингером в 1926.

Википедия

Интегро-дифференциальные уравнения

Интегро-дифференциальные уравнения — класс уравнений, в которых неизвестная функция содержится как под знаком интеграла, так и под знаком дифференциала или производной.

L n [ φ ( x ) ] λ a b K ( x , y , P m [ φ ( y ) ] ) d y = f ( x ) {\displaystyle {L}_{n}[\varphi (x)]-\lambda \int _{a}^{b}K(x,y,{P}_{m}[\varphi (y)])dy=f(x)}

где

L n [ φ ( x ) ] = d n φ ( x ) d x n + a 1 ( x ) d n 1 φ ( x ) d x n 1 + . . . + a n ( x ) φ ( x ) {\displaystyle {L}_{n}[\varphi (x)]={\frac {{d}^{n}\varphi (x)}{{dx}^{n}}}+{a}_{1}(x){\frac {{d}^{n-1}\varphi (x)}{{dx}^{n-1}}}+...+{a}_{n}(x)\varphi (x)} называется внешним дифференциальным оператором, а
P m [ φ ( y ) ] = d m φ ( y ) d y m + b 1 ( y ) d m 1 φ ( y ) d y m 1 + . . . + b m ( y ) φ ( y ) {\displaystyle {P}_{m}[\varphi (y)]={\frac {{d}^{m}\varphi (y)}{{dy}^{m}}}+{b}_{1}(y){\frac {{d}^{m-1}\varphi (y)}{{dy}^{m-1}}}+...+{b}_{m}(y)\varphi (y)}  — внутренним дифференциальным оператором
K ( x , y , P m [ φ ( y ) ] ) {\displaystyle K(x,y,{P}_{m}[\varphi (y)])}  — ядро интегро-дифференциального уравнения

Некоторые интегро-дифференциальные уравнения можно свести к дифференциальным уравнениям в банаховом пространстве, однако существуют эволюционные интегро-дифференциальные уравнения (встречающиеся в теории упругости и моделях биологических процессов), содержащие интегрирование по времени, для которых это сделать сложно.