Сверхпроводящие магнитометры - определение. Что такое Сверхпроводящие магнитометры
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Сверхпроводящие магнитометры - определение

ЭЛЕКТРОМАГНИТ, В КОТОРОМ ТОК, СОЗДАЮЩИЙ МАГНИТНОЕ ПОЛЕ, ПРОТЕКАЕТ В ОСНОВНОМ ПО СВЕРХПРОВОДНИКУ, ВСЛЕДСТВИЕ ЧЕГО ОМИЧЕСКИЕ ПОТЕРИ В ОБМОТК
Сверхпроводящие магниты; Магнит сверхпроводящий
  • Лос-Аламосской лаборатории]]

СВЕРХПРОВОДЯЩИЕ МАГНИТОМЕТРЫ      
приборы для измерения магнитных полей и их градиентов, действие которых основано на Джозефсона эффекте. Чувствительность достигает 10-13 Тл (10-9 Гс).
Сверхпроводящие магнитометры      

квантовые магнитометры (См. Квантовый магнитометр), действие которых основано на Джозефсона эффекте. Чувствительность С. м. достигает 10-9 гс (10-13 тл), а при измерениях градиента магнитного поля Сверхпроводящие магнитометры 10-10 гс/см (10-12 тл/м). Чувствительный элемент С. м. (сокращённо ЧЭ) представляет собой электрический контур из сверхпроводника с контактами Джозефсона (ими могут быть разделяющие сверхпроводник тонкие, Сверхпроводящие магнитометры10 А, плёнки изолятора, точечные контакты и т. п.). ЧЭ реагирует на изменение напряжённости (индукции) магнитного поля, пронизывающего сверхпроводящий контур.

На рис. 1 приведена схема С. м., ЧЭ которого содержит два идентичных контакта Джозефсона, включенных параллельно в цепь источника постоянного тока. Ток, разрушающий сверхпроводимость в ЧЭ (Ikc), зависит от электрических характеристик контактов и величины магнитного потока Ф, пронизывающего контур:

Ikc = 2Ic |cos π Ф/Фо|,

где Фо = 2․10-7 гс см2 - квант магнитного потока (магнитный поток через сверхпроводящий контур квантуется, см. Сверхпроводимость), Ic - ток разрушения сверхпроводимости каждого из контактов (Критический ток) - должен быть мал (Ic Сверхпроводящие магнитометры Фо/L, где L - индуктивность контура). С изменением потока Ф ток Ikc в контуре испытывает осцилляции (рис. 2). Ток /кс достигает максимального значения всякий раз, как только изменяющийся поток Ф оказывается равным целому числу квантов потока Фо, т. е. период осцилляций равен кванту магнитного потока. Если через ЧЭ протекает постоянный ток Сверхпроводящие магнитометрыIkc, то электрическое напряжение на контуре также периодически зависит от Ф. По числу осцилляций можно определить Ф, а зная площадь S сверхпроводящего контура, найти напряжённость Н исследуемого магнитного поля (Н = Ф/S). Обычно для повышения надёжности работы С. м. в контуре дополнительно возбуждают периодическое магнитное поле модуляции. Возбуждаемое переменное поле имеет амплитуду ≤Фо/2S. При наличии поля модуляции на контуре появляется переменное напряжение, фаза которого изменяется прямо пропорционально внешнему полю Н. Измерительный блок С. м. выполняет функции усиления переменной составляющей напряжения на контуре и выделения изменения фазы. На выходе измерительного блока получают сигнал, пропорциональный изменению фазы, а следовательно, значению Н.

С. м. изготовляют также с источниками (генераторами) переменного тока частотой 107-109 гц и с одним контактом Джозефсона в ЧЭ (рис. 3). Ток в ЧЭ возбуждается индуктивно посредством резонансного контура, настроенного на частоту генератора. Одновременно переменный ток низкой частоты (Сверхпроводящие магнитометры103 гц), протекающий через тот же контур, осуществляет модуляцию магнитного поля в ЧЭ. Вольтамперная характеристика ЧЭ нелинейна относительно магнитного поля, которое пронизывает контур. Поэтому фаза низкочастотной модуляции изменяется в зависимости от величины внешнего (исследуемого) магнитного поля. К ЧЭ внешнее поле подводится трансформатором магнитного поля, который состоит из приёмной петли и катушки, индуктивно связанной с ЧЭ (материалом для обмотки трансформатора служит сверхпроводящая проволока, передача потока происходит без потерь). В С. м. рассматриваемого типа трансформатор имеет две входные петли, включенные навстречу друг другу. При таком включении петель ЧЭ реагирует на градиент поля и является градиентометром. Измерительный блок С. м. осуществляет усиление модулированного высокочастотного сигнала и его детектирование. В результате выделяется сигнал низкой частоты, фаза которого пропорциональна измеряемому градиенту поля.

Очень высокая чувствительность С. м. позволила осуществить с их помощью ряд тонких экспериментов: уточнить значения физических постоянных (См. Физические постоянные), продвинуть измерение электрического напряжения в область значений 10-14 в, зафиксировать магнитокардиограммы человеческого сердца и др.

Лит.: Фейнман P., Лейтон P., Сэндс М., Фейнмановские лекции по физике, [пер. с англ.], т. 9, М., 1967; Кларк Дж., Низкочастотные применения сверхпроводящих квантовых интерференционных устройств, "Тр. института инженеров по электронике и радиоэлектронике", 1973, т. 61, № 1, с. 9; Заварицкий Н. В., Ветчинкин А. Н., Установка СКИМП, "Приборы и техника эксперимента", 1974, № 1.

Н. В. Заварицкий.

Рис. 1. Схема сверхпроводящего магнитометра с двумя параллельно включенными контактами Джозефсона для измерения напряженности (индукции) магнитного поля.

Рис. 2. Запись осцилляций тока, текущего в сверхпроводящем контуре с двумя параллельными контактами Джозефсона.

Рис. 3. Схема сверхпроводящего магнитометра для измерения градиента магнитного поля (градиентометра).

ПРЕЦИЗИОННЫЕ СПЛАВЫ         
  • Коэффициент теплового расширения сплавов железа/никель в зависимости от процентного содержания никеля. Ярко выраженный минимум при концентрации никеля 36 %
Инварные сплавы; Магнитно-твердые сплавы; Сплавы с заданными свойствами упругости; Сверхпроводящие сплавы; Термобиметаллы; ГОСТ 10994-74; Магнитно-мягкий сплав; Inovco; NILO; 42Н; Магнитно-мягкие материалы; Магнитно-твердые материалы; Сплавы прецизионные; Магнитно-твёрдые сплавы; Магнитно-твёрдые материалы; Прецизионный сплав
(от франц. precision - точность), металлические сплавы с особыми физическими свойствами (магнитными, электрическими, тепловыми, упругими) или с редким сочетанием свойств, обусловленных точностью химического состава, отсутствием примесей, тщательностью изготовления и обработки. Применяются главным образом для изготовления точных приборов, а также в бытовой технике (телевизорах, часах и т. д.).

Википедия

Сверхпроводящий магнит

Сверхпроводя́щий магни́т — электромагнит, в котором ток, создающий магнитное поле, протекает в основном по сверхпроводнику, вследствие чего омические потери в обмотке сверхпроводящего магнита весьма малы.

Сверхпроводники второго рода можно применять на практике как важный элемент в конструкции магнитов для создания постоянных сильных полей.

Сверхпроводящий материалы приобретают сверхпроводящие свойства только при низких температурах, поэтому сверхпроводящий магнит помещают в сосуд Дьюара, заполненный жидким гелием, который, в свою очередь, помещен в сосуд Дьюара с жидким азотом (чтобы снизить испарение жидкого гелия).

Для изготовления сверхпроводящих магнитов используются сверхпроводящие провода.

Диамагнетики выталкиваются из сильного постоянного магнитного поля, но эти силы, действующие на диамагнитные объекты от обычного магнита, слишком слабы, однако в сильных магнитных полях сверхпроводящих магнитов диамагнитные материалы, например кусочки свинца или графита могут пари́ть, а поскольку углерод и вода являются веществами диамагнитными, в очень сильном магнитном поле могут пари́ть даже органические объекты, например живые лягушки и мыши.

Самым крупным на 2014 год является сверхпроводящий магнит, используемый в центральной части детектора CMS Большого адронного коллайдера.

Что такое СВЕРХПРОВОДЯЩИЕ МАГНИТОМЕТРЫ - определение