Световые измерения - определение. Что такое Световые измерения
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Световые измерения - определение

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ ВИДИМОГО ДИАПАЗОНА
Оптическое излучение; Свет (природное явление); Световой сигнал; Оптический сигнал; Световые измерения
  • Нормированные спектральные зависимости чувствительности колбочек трёх типов. Пунктиром показана светочувствительность палочек
  • ночного]] (синяя линия) зрения
  • преломления]] света. Трубочка для коктейля кажется изогнутой из-за преломления света на границе между жидкостью и воздухом
  • Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с
  • Спектр света — часть спектра электромагнитного излучения
Найдено результатов: 453
СВЕТОВЫЕ ИЗМЕРЕНИЯ         
то же, что фотометрия.
Световые измерения         

количественные определения величин, характеризующих Оптическое излучение (свет в широком смысле слова), оптические свойства материалов (прозрачность, отражательную способность) и пр. С. и. производятся приборами, в состав которых входят Приёмники света. В простейших случаях в диапазоне видимого света приёмником, с помощью которого оцениваются световые величины, служит человеческий глаз. Подробно о С. и. см. в ст. Фотометрия.

свет         
1. м.
1) а) Лучистая энергия, воспринимаемая глазом и делающая окружающий мир видимым.
б) Освещение, исходящее от какого-л. источника.
в) перен. Внутренняя озаренность, возникшая под влиянием какого-л. чувства.
2) а) Место, откуда исходит освещение.
б) Освещенное место, пространство.
3) Источник освещения и приспособление для освещения в домах и на улице.
4) разг. Восход солнца; рассвет.
5) Светлое пятно на картине, передающее наибольшую освещенность какого-л. участка изображаемого; блик.
6) Употр. как символ истины, разума, просвещенности или радости, счастья.
2. м.
1) Земля, Вселенная.
2) Люди, населяющие Землю.
3. м.
1) Общественная среда, общество.
2) Избранный круг, высшее общество.
3) устар. Жизнь мирян; светская жизнь (противоп.: монастырская жизнь).
СВЕТ         
в узком смысле - электромагнитные волны в интервале частот, воспринимаемых человеческим глазом (4,0?1014-7,5?1014 Гц). Длина волн от 760 нм (красный) до 380 нм (фиолетовый). В широком смысле - то же, что и оптическое излучение.
СВЕТ         
зрительное ощущение, возникающее в глазу, и видимое излучение, вызывающее такое ощущение. Это как бы две стороны одного явления - субъективная и физическая. Первой посвящена статья ГЛАЗ, а второй - статьи ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ; ОПТИЧЕСКИЕ ПРИБОРЫ; ОПТИКА; ФИЗИКА. Ниже дается краткий очерк истории развития представлений о природе света. (Эти представления столь важны для всего хода развития физики, что для полного изложения данного вопроса пришлось бы, пожалуй, написать историю физики.)
Ранние представления. О том, что такие представления, дошедшие до нас из древних времен, возникли на очень ранней стадии развития человечества, свидетельствуют как их примитивность, так и их разнообразие. От греков, а также индусов дошли утверждения о том, что зрение есть нечто исходящее из глаза и как бы ощупывающее предметы, но также и другие теории, согласно которым свет представляет собой поток вещества, исходящий от видимого предмета. Среди этих гипотез ближе всего к современным представлениям точка зрения Демокрита из Абдеры (5 в. до н.э.). Он учил, что свет - это поток частиц, обладающих определенными физическими свойствами, к которым не относится цвет (ощущение цвета возникает уже как следствие вхождения в глаз света). Он писал: "Сладость существует как условность, горечь - как условность, цвет - как условность; в реальности существуют лишь атомы и пустота".
Позднее платоники дали весьма сложное объяснение сущности зрения, основанное на гипотезе о трех потоках частиц, исходящих из Солнца, предмета и глаза, сливающихся воедино и возвращающихся в глаз. Положительным в этой теории было то, что признавалась необходимость источника света; однако она не привела ни к каким значительным научным выводам, и, по-видимому, новых идей не возникало до 11 в., когда знаменитый арабский ученый Альхазен (аль-Хасан), теории которого лежат в основе современных представлений об устройстве и функциях глаза, вернулся к мысли, что источником света служит светящийся предмет.
В средние века с возрождением наук в Европе пришло понимание того, что правильно объяснить физическое явление можно, лишь полностью изучив происходящее, и этот новый дух науки вызвал особый интерес к оптическим экспериментам. Одновременно с изобретением очков, микроскопа и телескопа в эти же века ученые, такие, как Р.Бэкон, Леонардо да Винчи, Й.Кеплер, Г.Галилей и Р.Декарт, пытались понять физические законы, описывающие истинную природу света. По-видимому, все, кроме Декарта, придерживались эмиссионной теории Альхазена. Декарту же мы обязаны понятием "светоносного эфира" (1637) - бесконечно упругой среды, заполняющей все пространство и передающей свет как некое давление. В начале 20 в. эта концепция была оставлена, но лишь после сотни лет интенсивной разработки, в течение которых она порождала весьма глубокие и долгоживущие гипотезы.
Опыты Ньютона. В 1666 приступил к экспериментальному изучению природы цвета И.Ньютон. Его выводы, представленные в ряде сообщений Королевскому обществу, произвели глубокое впечатление на научные круги Европы, опровергнув ряд хитроумных гипотез и впервые четко обозначив те фундаментальные вопросы, на которые следовало ответить. В итоге Ньютон создал теорию цвета в том виде, в каком она существует по сей день. Согласно его теории, белый свет есть смесь всех цветов, а предметы кажутся цветными, поскольку отражают в глаз наблюдателя одни компоненты белого цвета более интенсивно, нежели другие. Все это, как и множество других идей, было не просто изложено, но и подтверждено многочисленными искусными и точными экспериментами, результаты которых предвосхищали и отметали все возможные возражения. Даже сегодня серьезное изучение проблем цвета лучше всего начинать с внимательного прочтения "Оптики" Ньютона, впервые опубликованной в 1704; своими общими научными замечаниями особенно интересно ее 4-е издание (1728).
Однако для понимания природы света полученные Ньютоном экспериментальные результаты мало что давали, и здесь он оказался не столь удачлив. Он отверг предположения таких ученых, как Гук и Гюйгенс, основанные на более ранних догадках Декарта о том, что свет представляет собой некие возмущения типа волн (точнее, последовательности импульсов) в светоносном эфире. Между тем эта теория была способна хотя бы качественно объяснить явления интерференции и дифракции света. Ньютон же ошибочно полагал, что ей противоречат явление поляризации света и то обстоятельство, что непрозрачные предметы отбрасывают резкие тени. Его собственная гипотеза состояла в том, что свет - это поток частиц; он вообще не находил объяснения явлению поляризации, а явление интерференции (которое одним из первых начал экспериментально изучать) туманно объяснял "трудным и легким преломлением". Огромный авторитет Ньютона обеспечил господство этих взглядов на протяжении многих лет после его кончины.
Волновая теория. Лишь в начале 19 в. Т.Юнг в Англии и О.Френель во Франции создали детальную волновую теорию света, способную ответить на возражения Ньютона, а также просто и убедительно объяснить почти все известные в то время оптические явления. Математическая волновая теория Френеля и его последователей лежит в основе современной теоретической оптики, хотя и представляет собой просто теорию волнового движения. Она не нуждается в гипотезах относительно того, в какой среде происходит движение. Однако физика на протяжении всего 19 в. пыталась найти ответ на этот вопрос. Но при разработке чисто механической теории распространения волн в эфире возникла трудность: для объяснения поляризации света требовалось, чтобы световые волны были поперечными (подобно волнам, бегущим по веревке). Всякая среда, в которой могут распространяться поперечные колебания, должна обладать определенной жесткостью; это требование не удавалось согласовать со свойствами пустого пространства. Огромные усилия в этом направлении, в том числе использование самых мощных из существовавших тогда методов математического анализа, оказались тщетными. Всякая объединенная модель эфира, света и атомов, в которой эфир не оказывал бы воздействия на поведение атомов, давала следствия, которые опровергались экспериментом.
Максвелл. У истоков другого пути поисков природы света лежало открытие Дж.Максвелла, сделанное в 1861 и состоявшее в том, что световые явления связаны с электричеством и магнетизмом. Поначалу эфир рассматривался Максвеллом как сложная механическая система, действие которой проявляется в электрических и магнитных силах, но подчиняется законам механики. На основе уравнений, описывающих этот механизм, Максвелл установил возможность существования электромагнитного поля, способного отделяться от порождающих его зарядов и токов и уже независимо от них распространяться в пространстве с постоянной скоростью 310 745 км/с. Хотя Максвелл не занимался непосредственно построением теории света, совпадение этого числа с величиной скорости света, среднее значение которой по имевшимся тогда данным составляло 311 215 км/с, показалось ему крайне удивительным. (Результаты современных измерений дают 299 792 км/с, что согласуется с расчетами на основе уравнений Максвелла.) 10 декабря 1861 он писал своему другу У.Томсону (впоследствии лорду Кельвину): "Я составлял и решал уравнения, даже не подозревая, что скорость распространения магнитных эффектов может быть близка к скорости света, а потому, думаю, у меня есть основания полагать, что магнитная и светоносная среды идентичны".
Однако самой большой заслугой Максвелла было, пожалуй, то, что он сразу же понял: механическая модель не очень существенна для сделанных выводов. В его более поздней работе эти выводы представлены в их современном виде как соотношения между электрическими и магнитными величинами, остающиеся верными независимо от механического объяснения. Г.Герц показал на опыте, что теория Максвелла количественно верна при описании процессов испускания, распространения и поглощения излучения. Эти открытия сделали задачу сторонников эфира еще более сложной, т.к. теперь им следовало дать объяснение не только явлению света, но и электромагнитным явлениям. См. также ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ
.
Квантовая теория. Теория относительности Эйнштейна появилась в 1905 и в удивительно короткий срок, учитывая ее радикальный характер, завоевала всеобщее признание. Отчасти это произошло потому, что теория относительности, благодаря глубокой связи с экспериментальными фактами, продемонстрировала, что теорию эфира следует отбросить. Хотя теория Эйнштейна и не давала ответа на фундаментальный вопрос, каким образом распространяется свет, оставляя проблему почти в том же виде, как и во времена Юнга и Френеля, она выбила почву из-под разного рода теорий эфира, доказав, что для данного вопроса нет механистического решения. См. также ОТНОСИТЕЛЬНОСТЬ
.
Когда теория эфира вступала в свою последнюю фазу, столь же фундаментальное и плодотворное замешательство возникло в другой области физики. Еще в 1887 в ходе экспериментальной проверки теории Максвелла Герц был озадачен явлением фотоэффекта (испусканием отрицательных электрических зарядов с поверхности металла под действием света). К 1902 стало очевидно, что теория Максвелла совершенно неверно предсказывает число и энергию электронов, испускаемых при фотоэффекте. Опираясь на высказанную ранее Планком идею, Эйнштейн в 1905 предложил очень простое объяснение фотоэффекта: свет падает на поверхность металла в виде потока частиц (возрождение представлений Ньютона), энергия которых пропорциональна частоте света, и каждая из них выбивает с поверхности один электрон. Пропорциональность энергии частоте записывается в виде E = h?, где E - энергия, . - частота падающего света, а h - универсальный коэффициент пропорциональности, называемый постоянной Планка. Существование дискретных порций энергии, названных квантами, а позднее фотонами, было экспериментально подтверждено в последующее десятилетие. Предложенное Эйнштейном соотношение выполнялось с высокой точностью и нашло свое место в квантовой теории, когда ее впервые применил к строению атома Н.Бор (1912). См. также КОМПТОНА ЭФФЕКТ; ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ; КВАНТОВАЯ МЕХАНИКА.
Однако долгое время физический смысл гипотезы Эйнштейна оставался неясным. Очевидно, что говорить о длине волны как о характеристике механической частицы означало бы смешивать электромагнитные и механические свойства, как это было в 19 в. Очевидно также, что интерференцию света от двух щелей невозможно объяснить каким-либо взаимодействием частиц, поскольку частица должна пройти либо через одну, либо через другую щель, и влиять на ее движение обе щели не могут.
Эти и многие подобные вопросы почти 20 лет тревожили сторонников квантовой теории, вздохнувших с облегчением лишь с появлением в 1925 ее современного варианта. Решение было простым, изящным и полностью согласовалось с экспериментом: свет представляет собой волну, но не механическую, пока не происходит обмен энергией с веществом. Переход энергии от света к веществу или от вещества к свету подчиняется соотношению E = h?. Данное соотношение является математическим следствием теории, которая предсказывает, что то же самое справедливо для волны любой природы, например звуковой. В обыденном же опыте дискретность испускания и поглощения энергии не обнаруживается по той причине, что энергия квантов, как правило, мала и лишь поток большого их числа может вызвать зрительное ощущение. (Например, нормальный человеческий глаз, полностью адаптированный к темноте, едва воспринимает освещенность, соответствующую попаданию в глаз примерно 60 фотонов в секунду, а обычные уровни освещенности во много тысяч раз больше.) В то же время фотоэффект и комптон-эффект, которые отражают воздействие отдельных фотонов, а также поглощение звука в кристаллах (соответствующие кванты называют фононами), хорошо известны в физике твердого тела. В настоящее время состояние теории света можно считать удовлетворительным в том смысле, что не осталось значительного объема необъясненной экспериментальной информации. Однако, как видно из истории развития представлений о природе света, нельзя уверенно предсказать судьбу физической гипотезы.
свет         
1) см. Излучение видимое; 2) см. Излучение оптическое.
свет         
муж. состоянье, противное тьме, темноте, мраку, потемкам, что дает способ видеть; иные свет принимают за сотрясение малейших частиц вещества, другие - за особое, тончайшее вещество, разливаемое всюду солнцем и огнем. Свет прямой, самосвет, от горящего тела, солнца; свет чужой, отражательный, от темного тела, на которое падает прямой свет. Свет денной, солнечный: свет огневой. Свет ширится лучами, от точки повсюдно, образуя шар. Отойди от свету, не заступай свету, не засть, не стой в свету, против света. Свет настал, рассветает, солнце всходит. Чуть свет, набрезгу, зарей, на заре. Светом крыто, ветром огорожено, ничего нет. В теми свет виден, зарево, огонек, или сиянье, блеск. Летом свет во всю ночь, светло. Не только свету, что в окне: на улицу выйдешь - больше увидишь (здесь свет может означать и мир). Ни свет, ни заря (рано). От солнца бегать, света не видать. Тьма света не любит - злой доброго не терпит. Один женился - свет увидал; другой женился головою пропал. Ты мой свет в окне. Не отлагает свет заутрени, ни тьма вечерни. Чтоб мне свету Божьего не взвидеть! Первый вечер (весной) играют до бела света. Кто нечаянно завидит свет в своем доме - жди счастья. По стене ползет - то к свету, то от света (волоковой ставенек). А что краше света. (красное солнышко). Мету, не вымету; пора придет, сам уйдет (свет солнца).
| Освещенье, что дает свет или светит. У вас какой свет. Лучина, или жирник, свеча и пр. Порядить молотильщиков на своем, либо на ихнем свету. У нас свет казенный. Нанял жилье с теплом и со светом, с отопленьем и с освещеньем. На дворе свет, светок, или ·*смол. светок, расвет, светает, солнце близится к восходу. Светком приходи, рано, чуть свет.
| Просвет, простор для света, светла. Окно или дверь пяти, шести четвертей в свету, шириной, ширина проема окна, меж косяков. Прорубить свет, окно.
| Видение, зрение, свет очей, способность различать глазами, видеть. У него свет отнялся, свету нет, он темный, невидущий, невишной, слепой, ослеп. Свет очей его погас. Бог ему свету не дал, свет отнял.
| Истина или правое ученье, наука, про свещенье. Свет веры, - истины, Евангелие. Свет разума, ученье или наука. Ученье свет, а неученье тьма. Мы ныне свет увидали, наставились, просветились. Потемщики света не ищут. Народ озарился светом христианства. Муж, во свете благодати. Свет приде в мир, Иоан. Спаситель. Вы есте свет мира, Матф. просветители, наставники. Кем мир свет увидел, того и обидел (кого свет видел, того и обидел, всякого). Кем человек свет увидел, того и возненавидел.
| Свет, светик мой, свет очей моих, ласк. милый, любезный, ненаглядный, сердечный, болезный, желанный. И я (царь) ему (патриарху) свету молвил: не гораздо ли, государь, недомогаешь. Ни за что тебя, свет мой, или света, не покину, ·песен. Ты мой свет очной! Один брат - один свет милый. Свет-цветочек в сыру землю зашел, синю шапочку нашел (лен). Уж у Бога-света сначала света все доспето. Где совет (союз или любовь), там и свет. Увидать свет, родиться. Больной свет увидел, поправляется. Ангел света, ·противоп. ангел тьмы, добрый и злой. Встанем (со) светком, на заре.
| Вселенная, мир, земля наша, шар земной. Птичьего молока по всему свету не найдешь. Пожили мы на свете, посрамили добрых людей! На свете жить, не светом жить, не по истине, а по-мирскому. Белый свет не клином стал (или сошелся), простору много. Подумаешь, как чудно создан свет! Грибоедов. Преставленье света, страшный суд и конец миру. Отец светов, всех миров, Бог. Сыны света, чада света, озаренные истиною; чада света сего, мира, дети суеты, соблазна. Белый свет на волю. Даниил. Не нами свет начался, не нами и кончится. Кто людей веселит, за того весь свет стоит. Дураками свет стоит (или: красится). Неправда светом началась, светом и кончится. Родился мал, вырос пьян, помер стар - и свету не видал! На весь свет и солнышку не угреть (не усветить). Всего света не захватишь. Не мил и свет, когда милого нет. От бела света отстану, а старого любить не стану! Видал свету, не только что в окошке. Свету видал: со свиньями корм едал. Божьей волей свет стоит, наукой люди живут. Боятьсясмерти - на свете не жить.
| Род людской, мир, община, общество, люди вообще;
| отборное, высшее общество, суетное в обычаях или условиях жизни;
| суетность, мирщина; все земное, житейское, насущное, ·противоп. духовное
, нравственное
, Божеское
. На весь свет не угодишь. Весь свет обмолвится, молва правдива. Всему свету ведомо, всем светом признано. Издать книгу в свет, напечатать и пустить в продажу. Свет лукав. Он в свете живет, в большом свете, бывает на вечерах, на обедах, на сборищах в высшем кругу. Покинуть свет, умереть; или удалиться, уединиться, жить одиноко; или идти в монастырь.
| Свет, ·в·знач. мир, привет мирянину от монаха или духовного лица; светский, суетный человек. А ты, свет, удаляйся греха. Светы вы мои! бабье восклицанье изумления, просьбы и пр.
Свет         
Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380−400 нм (750−790 ТГц), а в качестве длинноволновой границы — участок 760−780 нм (385−395 ТГц).
ОПТИЧЕСКОЕ ИЗЛУЧЕНИЕ         
электромагнитные волны с длиной в диапазоне от 1 нм до 1 мм. К оптическому излучению помимо воспринимаемого человеческим глазом видимого света относятся инфракрасное и ультрафиолетовое излучения.
Оптическое излучение         

свет в широком смысле слова, Электромагнитные волны, длины которых заключены в диапазоне с условными границами от 1 нм до 1 мм. К О. и., помимо воспринимаемого человеческим глазом видимого излучения, относятся Инфракрасное излучение и Ультрафиолетовое излучение. Параллельный термину "О. и." термин "свет" исторически имеет менее определенные спектральные границы - часто им обозначают не все О. и., а лишь его видимый поддиапазон. Для оптических методов исследования характерно формирование направленных потоков излучения с помощью оптических систем (См. Оптические системы), включающих линзы (См. Линза), зеркала (См. Зеркало), Призмы оптические, дифракционные решётки (См. Дифракционная решётка) и т.д.

Волновые свойства О. и. обусловливают явления дифракции света (См. Дифракция света), интерференции света (См. Интерференция света), поляризации света (См. Поляризация света) и др. В то же время ряд оптических явлений невозможно понять, не привлекая представления об О. и. как о потоке быстрых частиц - фотонов. Эта двойственность природы О. и. сближает его с иными объектами микромира и находит общее объяснение в квантовой механике (см. также Корпускулярно-волновой дуализм). Скорость распространения О. и. в вакууме (Скорость света) - около 3·108 м/сек. В любой другой среде скорость О. и. меньше. Значение преломления показателя (См. Преломления показатель) среды, определяемое отношением этих скоростей (в вакууме и среде), в общем случае неодинаково для разных длин волн О. и., что приводит к дисперсии О. и. (см. Дисперсия света).

Различные виды О. и. классифицируют по следующим признакам: природа возникновения (Тепловое излучение, люминесцентное излучение, см. Люминесценция); степень однородности спектрального состава (монохроматическое, немонохроматическое, см. Монохроматический свет); степень упорядоченности ориентации электрического и магнитного векторов (естественное, поляризованное линейно, по кругу, эллиптически); степень рассеяния потока излучения (См. Поток излучения) (направленное, диффузное, смешанное) и т.д.

Падающий на поверхность какого-либо тела поток О. и. частично отражается (см. Отражение света), частично проходит через тело и частично поглощается в нём (см. Поглощение света). Поглощённая часть энергии О. и. преобразуется главным образом в тепло, повышая температуру тела. Однако возможны и другие виды преобразования энергии О. и. - Фотоэффект (Фотоэлектронная эмиссия) Фотолюминесценция, фотохимические превращения (см. Фотохимия) и пр.

О роли О. и. и оптических методов исследования в науке и технике см. ст. Оптика и литературу при ней.

Ю. С. Черняев.

Википедия

Свет

Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380−400 нм (750−790 ТГц), а в качестве длинноволновой границы — участок 760−780 нм (385−395 ТГц).

В широком смысле, используемом вне физической оптики, светом часто называют любое оптическое излучение, то есть такое электромагнитное излучение, длины волн которого лежат в диапазоне с приблизительными границами от единиц нанометров до десятых долей миллиметра. В этом случае в понятие «свет» помимо видимого излучения включаются как инфракрасное, так и ультрафиолетовое излучения.

Раздел физики, в котором изучается свет, носит название оптика.

Также, особенно в теоретической физике, термин свет может иногда выступать просто синонимом термина электромагнитное излучение, независимо от его частоты, особенно когда конкретизация не важна, а хотят, например, использовать более короткое слово.

Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой (или, как говорили ранее, нулевой массой покоя).

Что такое СВЕТОВЫЕ ИЗМЕРЕНИЯ - определение