Сдвиг фаз - определение. Что такое Сдвиг фаз
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Сдвиг фаз - определение

Сдвиг фазы; Разность фаз
  • Сдвиг фаз
Найдено результатов: 41
СДВИГ ФАЗ         
разность начальных фаз переменных физических величин, изменяющихся по синусоидальному закону с одинаковой частотой (напр., напряжения в цепи синусоидального тока). Измеряется в градусах, радианах и долях периода.
Сдвиг фаз         

разность начальных фаз (См. Фаза) переменных величин, изменяющихся по синусоидальному закону с одинаковой частотой. С. ф. измеряется в градусах, радианах или долях периода. В электротехнике большое практическое значение имеет С. ф. между напряжением и током, определяющий Мощности коэффициент в цепях переменного тока (См. Переменный ток).

Сдвиг фаз         
Сдвиг фаз — разность между начальными фазами двух переменных величин, изменяющихся во времени периодически с одинаковой частотой. Сдвиг фаз является величиной безразмерной и может измеряться в радианах (градусах) или долях периода.
ЛЭМБОВСКИЙ СДВИГ         
уровней энергии , небольшие различия энергий электрона в атоме водорода и водородоподобных атомах для некоторых состояний, в которых, согласно Дирака уравнению, энергии должны совпадать; в квантовой электродинамике объясняется тем, что влияние на электрон порождаемого им поля зависит от состояния электрона. Экспериментально установлен У. Ю. Лэмбом и Р. Резерфордом в 1947.
Сдвиг уровней         

небольшое отклонение тонкой структуры (См. Тонкая структура) уровней энергии водородоподобных атомов от предсказаний релятивистской квантовой механики, основанных на Дирака уравнении (См. Дирака уравнение). Согласно точному решению этого уравнения, атомные уровни энергии являются двукратно вырожденными: энергии состояний с одинаковым главным квантовым числом n = 1, 2, 3,... и одинаковым квантовым числом полного момента j = 1/2, 3/2... должны совпадать независимо от двух возможных значений орбитального квантового числа l = j ± 1/2 ≤ n-1 (исключая j + 1/2 = n, когда l = j - 1/2 = n-1). Однако в 1947 У. Лэмб и Р. Ризерфорд методом радиоспектроскопии (См. Радиоспектроскопия) измерили расщепление "вырожденных" уровней 2S1/2 (n = 2, l = 0, j = 1/2) и 2Р1/2 (n = 2, l = 1, j = 1/2) в атоме водорода - т. н. лэмбовский сдвиг. Новейшее экспериментальное значение этой величины Lнэксп. = (1058,90 ± 0,06) Мгц. Теоретически лэмбовский сдвиг объяснён и вычислен в рамках квантовой электродинамики (См. Квантовая электродинамика). Основной вклад (Сдвиг уровнейα3R, где α - Тонкой структуры постоянная, R - Ридберга постоянная) дают два радиационных эффекта (см. Радиационные поправки); 1) испускание и поглощение связанным электроном виртуальных фотонов (см. Виртуальные частицы), что приводит к изменению эффективной массы электрона и возникновению у него аномального магнитного момента; 2) возможность виртуального рождения и аннигиляции в вакууме электронно-позитронных пар (т. н. поляризация вакуума), что искажает кулоновский потенциал ядра на расстояниях порядка комптоновской длины волны (См. Комптоновская длина волны) электрона (Сдвиг уровней 4․10-11 см). Найден также вклад эффектов движения и структуры ядра атома водорода (протона). Современное теоретическое значение лэмбовского сдвига в водороде Lнтеор.= (1058,911 ± 0,012) Мгц полностью согласуется с экспериментальным, что является блестящим подтверждением основных положений квантовой электродинамики. Хорошо согласуются измеренные и вычисленные сдвиги других уровней, а также в других водородоподобных атомах (D, Не+ и т. п.).

Лит.: Сдвиг уровней атомных электронов и дополнительный магнитный момент электрона согласно новейшей квантовой электродинамике. Сб. статей, под ред. Д. Д. Иваненко, М., 1950; Фаустов Р. Н., Уровни энергии и электромагнитные свойства водородоподобных атомов, "физика элементарных частиц, и атомного ядра", 1972, т. 3, в. 1, с. 238.

Р. Н. Фаустов.

Лэмбовский сдвиг         
Лэ́мбовский сдвиг — различие между энергиями стационарных состояний ^2S_{1/2} и ^2P_{1/2} атома водорода и в водородоподобных ионах, обусловленное взаимодействием атома с нулевыми флуктуациями электромагнитного поля. Экспериментальное изучение смещения уровней атома водорода и водородоподобных ионов представляет фундаментальный интерес для проверки теоретических основ квантовой электродинамикиЛ.
Правило фаз         
  • Растворимый кофе — однородная система (гомогенная однофазная многокомпонентная)
  • Фазовая диаграмма воды
  • Лёд в воде — неоднородная система (гетерогенная двухфазная однокомпонентная)
Пра́вило фаз (или правило фаз Гиббса) — соотношение, связывающее число компонентов, фаз и термодинамических степеней свободы в равновесной термодинамической системе. Роль правила«Правило» — традиционно используемый термин для совершенно строгой (в рамках сделанных при выводе допущений) теоремы термодинамики.
Фаз правило         
  • Растворимый кофе — однородная система (гомогенная однофазная многокомпонентная)
  • Фазовая диаграмма воды
  • Лёд в воде — неоднородная система (гетерогенная двухфазная однокомпонентная)

закон фаз, соотношение термодинамики (См. Термодинамика), согласно которому для любой равновесной системы сумма числа фаз φ и вариантности (См. Вариантность) v равна числу Компонентов k, увеличенному на число параметров n, определяющих равновесное состояние системы: φ + v = k + n. При этом параметры состояния - температура Т, давление р, напряжённости электрического и магнитного полей и др. - должны быть одинаковыми во всех фазах. Если состояние системы может изменяться лишь под действием Т и р, причём размеры фаз таковы, что можно пренебречь величиной их поверхностной энергии, то Ф. п. принимает вид:

v = k + 2-φ.

Для конденсированных систем (например, сплавов (См. Сплавы) металлов), где р либо постоянно, либо изменяется так незначительно, что не влияет на состояние равновесия, Ф. п. принимает вид: v = k + 1 - φ; при переменном р и постоянном Т его вид тот же. Если состав сосуществующих фаз одинаков, как в максимумах и минимумах диаграмм состав - давление пара (см. Коновалова законы), а также диаграмм состав - температура кристаллизации (см. Розебома правила), система ведёт себя как однокомпонентная, т. е. для неё v = 3 - φ (при переменных р и Т) или v = 2 - φ (при постоянном р или Т). Наконец, когда в системе образуется химическое соединение, то k равно разности между числом химически индивидуальных веществ и числом независимых реакций.

Примеры. 1) Одно вещество (например, сера) может находиться: а) в одной фазе, в частности газообразной (v = 1 - 1 + 2 = 2), система дивариантна, т. е. Т и р можно менять в определённых пределах независимо друг от друга; б) в двух фазах, например в виде кипящей жидкости, находящейся в равновесии с паром (v = 1 - 2 + 2 = 1), система моновариантна, возможно изменение только Т или р, так как оба параметра связаны функциональной зависимостью (см. Клапейрона - Клаузиуса уравнение (См. Клапейрона - Клаузиуса уравнение)), в) в трёх фазах, в частности в виде ромбической серы в равновесии с жидкой и газообразной (v = 1 - 3 + 2 = 0), система нонвариантна; фазы сосуществуют при единственных значениях р и Т, см. Тройная точка. 2) Система, состоящая из воды и соли, тривариантна при наличии одной фазы (например, для раствора можно менять в известных пределах Т, р и концентрацию раствора с) и нонвариантна при наличии четырёх фаз (водного раствора, соли, льда и пара, эти фазы могут сосуществовать при единственном сочетании значений Т, р и с).

Ф. п. вывел Дж. Гиббс (опубликовано в 1876). Его широко использовали в конце 19 - начале 20 вв. Я. Вант-Гофф, Х. Розебом и их ученики, Н. С. Курнаков и его школа. Ф. п. имеет особенно большое значение при исследовании гетерогенных систем (См. Гетерогенная система), в частности в металловедении (См. Металловедение), металлургии (См. Металлургия), петрографии (См. Петрография), химической технологии (См. Химическая технология) (см. также Диаграмма состояния, Диаграмма химическая, Физико-химический анализ).

Лит.: Гиббедж. В., О существующих фазах материи, в его кн.: Термодинамические работы, пер. с англ., М. - Л., 1950, с. 143-48; Аносов В. Я., Погодин С. А., Основные начала физико-химического анализа, М. - Л., 1947; Древинг В. П., Калашников Я. А., Правило фаз с изложением основ термодинамики, [2 изд., М.], 1964; Сторонкин А. В., Термодинамика гетерогенных систем, ч. 1-3, [Л.], 1967-69; Карапетьянц М. Х., Химическая термодинамика, 3 изд., М., 1975.

М. Х. Карапетьянц.

ФАЗ ПРАВИЛО         
  • Растворимый кофе — однородная система (гомогенная однофазная многокомпонентная)
  • Фазовая диаграмма воды
  • Лёд в воде — неоднородная система (гетерогенная двухфазная однокомпонентная)
закон, выведенный в 1876 Дж.Гиббсом из термодинамических принципов и описывающий условия равновесия в гетерогенной системе. Прежде чем формулировать его, определим такие понятия, как фаза, число компонентов и вариантность. Фаза - это однородная часть системы с определенными физическими свойствами, которая отделена от других частей четкой границей раздела. Например, лед, вода и пар - три фазы, в которых может находиться водная система. Число компонентов определяется минимальным числом независимых химических веществ, которые задают состав каждой из фаз. Для водной системы имеется только один такой компонент - вода. Вариантность (число степеней свободы) - это число параметров состояния, таких, как температура, давление или концентрация, которые необходимо задать, чтобы полностью определить равновесное состояние системы.
Если система находится вне поля сил (гравитационных, электрических, магнитных, сил поверхностного натяжения), а равновесие между фазами определяется только температурой, давлением и составом, то вариантность F связана с числом компонентов С и фаз Р, находящихся в равновесии, следующим соотношением (правило фаз Гиббса):
F = C - P + 2
Для однокомпонентной системы C = 1, и в соответствии с правилом фаз F = 3 - P, или F + P = 3, т.е. сумма вариантности и числа фаз, находящихся в равновесии, должна равняться 3. Если имеется только одна фаза (например, вода), то система является дивариантной. Это значит, что два параметра (например, температура и давление) могут меняться (конечно, в определенных пределах) без появления новой фазы. Если в равновесии находятся две фазы (например, вода и насыщенный пар), то температура и давление связаны друг с другом функциональной зависимостью, т.е. произвольно можно выбирать лишь одну из них: если подвергнуть систему большему давлению, чем равновесное, то пар превратится в воду. Такую систему называют моновариантной. И наконец, трехфазная система нонвариантна (инвариантна). Это означает, что три фазы однокомпонентной системы (например, лед, вода и пар) могут находиться в равновесии лишь при определенных температуре и давлении. См. также ФИЗИЧЕСКАЯ ХИМИЯ; ВОДА, ЛЕД И ПАР.
Фазоуказатель         
Фазоуказатель — индикаторный прибор, помогающий выявить расположение фаз в случае, когда электроустановку требуется подключить к трёхфазной сети и важным является порядок следования фаз.

Википедия

Сдвиг фаз

Сдвиг фаз — разность между начальными фазами двух переменных величин, изменяющихся во времени периодически с одинаковой частотой. Сдвиг фаз является величиной безразмерной и может измеряться в радианах (градусах) или долях периода. При неизменном, в частности нулевом сдвиге фаз говорят о когерентности двух процессов. Фазой (фазовым углом) называется угол φ = 2 π t T , {\displaystyle \varphi =2\pi {\frac {t}{T}},} где T {\displaystyle T} — период, t {\displaystyle t} — доля периода смещения по фазе при наложении синусоид друг на друга. Так что если кривые (переменные величины — синусоиды: колебания, токи) сдвинуты по отношению друг к другу на четверть периода, то мы говорим, что они смещены по фазе на π 2   ( 90 ) , {\displaystyle {\frac {\pi }{2}}~(90^{\circ }),} если на восьмую часть (долю) периода — то, значит, на π 4 {\displaystyle {\frac {\pi }{4}}} и т. д.
Когда идёт речь о нескольких синусоидах, сдвинутых по фазе, техники говорят о векторах тока или напряжения. Длина вектора соответствует амплитуде синусоиды, а угол между векторами — сдвигу фаз. Многие технические устройства дают нам не простой синусоидальный ток, а такой, кривая которого является суммой нескольких синусоид (соответственно, сдвинутых по фазе).

Для измерения сдвига фаз между двумя электрическими сигналами применяется электроизмерительный прибор — фазометр.

Фазовый детектор — устройство, которое сравнивает фазы двух входных сигналов и формирует сигнал, пропорциональный разности их фаз.

В электротехнике сдвиг фаз между напряжением и током определяет коэффициент мощности в цепях переменного тока.

В радиотехнике широко применяются RC-цепочки, которые сдвигают фазу входного и выходного сигнала RC-цепочки в зависимости от параметров сопротивления и ёмкости в цепи. Применяется в RC-генераторах.

Наведённая во вторичных обмотках идеального трансформатора ЭДС для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке. При противофазном включении обмоток трансформатор изменяет полярность мгновенного напряжения на противоположную, в случае синусоидального напряжения сдвигает фазу на 180°. Применяется в генераторе Мейснера и др.

Что такое СДВИГ ФАЗ - определение