Спектральная аппаратура рентгеновская - определение. Что такое Спектральная аппаратура рентгеновская
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Спектральная аппаратура рентгеновская - определение

Аппаратура канала связи; Аппаратура канала данных
Найдено результатов: 78
Спектральная аппаратура рентгеновская      

аппаратура, в которой Рентгеновские лучи возбуждаются в исследуемом веществе, разлагаются в спектр и регистрируются. Прецизионная С. а. р. служит для исследования тонкой структуры рентгеновских спектров (См. Рентгеновские спектры), аналитическая - для определения элементного состава вещества (см. Спектральный анализ рентгеновский). Прецизионная аппаратура должна обладать высокой разрешающей способностью, аналитическая - высокой светосилой.

В зависимости от цели и условий исследования и характера объекта применяют различные типы С. а. р.

Дифракционная С. а. р. основана на разложении рентгеновского излучения в спектр с помощью дифракции рентгеновских лучей (См. Дифракция рентгеновских лучей). В состав этой С. а. р. входят: Рентгеновская трубка, источник её питания, диспергирующий элемент (кристалл-анализатор или Дифракционная решётка), детектор рентгеновского излучения и электронная аппаратура, питающая его и регистрирующая его импульсы. В прецизионной С. а. р. применяются либо кристаллы-анализаторы, представляющие собой почти идеальные кристаллы, изогнутые по поверхности кругового цилиндра или сферы (рис. 1, а), либо дифракционные решётки, вогнутые по сферической поверхности (рис. 1, б). В аналитической С. а. р. используют либо изогнутые кристаллы, либо плоские кристаллы с многопластинчатым коллиматором Соллера, ограничивающим угловую расходимость падающего на кристалл излучения от нескольких угловых минут до 1° (рис. 1, в).

В качестве детекторов рентгеновского излучения в С. а. р. чаще всего применяют пропорциональные, сцинтилляционные или полупроводниковые счётчики фотонов, а для мягких рентгеновских лучей - фотокатоды с вторичным электронным умножителем открытого типа. Если С. а. р. предназначена для исследования первичных рентгеновских спектров, то исследуемое вещество наносят на анод разборной рентгеновской трубки и откачивают её до давления < 10-5 мм рт. cm. Если исследуют свойства вещества по его флуоресцентному рентгеновскому излучению, то применяют запаянную рентгеновскую трубку, а исследуемое вещество располагают вне трубки, возможно ближе к её окну.

С. а. р., предназначенная для одновременной регистрации 1-2 линий спектра, называется рентгеновским спектрометром (при фоторегистрации - спектрографом), а при одновременной регистрации многих (до 24) линий спектра - рентгеновским квантометром (рис. 2). Для выделения каждой линии квантометр имеет отдельный малогабаритный спектрометр, который вместе со своей электронной регистрирующей установкой называется его каналом. Излучение от анализируемого образца поступает во все каналы квантометра одновременно. Число импульсов детектора за определённое время счёта регистрирует цифропечатающая машинка. В спектрометрах часто применяют также интегрирование импульсов с последующей записью самописцем результатов непрерывного сканирования прибора вдоль спектра. Выходы каналов квантометров могут быть введены в ЭВМ для дальнейшей обработки информации.

В прецизионных спектрометрах непрерывная запись спектра вносит некоторые искажения, поэтому иногда применяют автоматическое шаговое сканирование: регистрируют число импульсов детектора во многих равноудалённых точках спектра. В этих точках спектрометр неподвижен в течение заданного времени, переход от точки к точке совершается быстро. В аналитических спектрометрах иногда применяют шаговое сканирование по точкам спектра, в которых расположены аналитические линии определяемых элементов. Такой спектрометр работает по программе, задающей набор определяемых элементов, время счёта импульсов в каждой из соответствующих точек спектра, необходимые параметры электронной peгистрирующей установки и тип кристалла-анализатора (в спектрометрах имеются 3-4 сменных кристалла). Всю программу и запись результатов спектрометр выполняет автоматически.

На промышленных предприятиях в качестве датчиков состава часто используют специализированную С. а. р. для определения одного или немногих элементов. К их числу относится аппарат АРФ-4М, основанный на методе стандарта-фона - анализе по отношению интенсивностей аналитической линии и линии фона. Эти линии расположены близко друг к другу и регистрируются одним детектором, попадая в него через две соответствующие щели. Качающаяся шторка поочерёдно перекрывает эти щели и одновременно переключаются две установки, регистрирующие им пульсы детектора. Регистрирующая установка прекращает счёт импульсов после набора заданного числа их на линии фона. Число импульсов, сосчитанное на аналитической линии, будет пропорционально отношению её интенсивности к интенсивности линии фона. Такие датчики состава применяются на обогатительных фабриках и металлургических заводах цветной металлургии. АРФ-4М позволяет определять 12 разных элементов.

Бездифракционная С. а. р. применяется для рентгеновского спектрального анализа. В ней рентгеновское излучение исследуемого образца непосредственно регистрируется сцинтилляционными, газовыми пропорциональными или полупроводниковыми счётчиками (рис. 3), амплитуды импульсов которых пропорциональны энергиям фотонов исследуемого излучения. Аналитические линии выделяются одно- или многоканальным амплитудным анализатором импульсов счётчика. При близком расположении окна счётчика к образцу полезно используемый телесный угол излучения каждого атома образца очень велик, а регистрируемая интенсивность превосходит её значение в дифракционной С. а. р. на несколько порядков. Это позволяет проводить анализ даже при очень слабом флуоресцентном рентгеновском излучении образца, возбуждаемом либо изотопными источниками, либо миниатюрными рентгеновскими трубками, анодный ток которых не превышает нескольких мка.

Недостатком бездифракционной С. а. р. является сравнительно невысокая разрешающая способность пропорционального детектора. Для устранения помех, создаваемых линиями, соседними с аналитической, чаще всего последовательно применяют пару сбалансированных фильтров из двух соседних элементов. С их помощью удаётся выделить ту область спектра, в которой находится аналитическая линия, и улучшить разрешающую способность бездифракционной С. а. р.

Малые габариты и масса позволяют применять бездифракционные анализаторы переносного типа для геологической разведки полезных ископаемых в полевых условиях и для спуска их в пробурённую скважину диаметром от 40 мм на глубину до 100 м.

Микроанализаторы основаны на возбуждении первичного рентгеновского излучения образца игольчатым электронным лучом (зондом) диаметром около 1 мкм, разложении этого излучения в спектр и его регистрации. Для получения тонкого электронного зонда используют электронную пушку и фокусирующие магнитные линзы. Применение светосильных фокусирующих спектрометров с изогнутыми кристаллами или вогнутой дифракционной решёткой позволяет при токе зонда всего нескольких мка получить спектр данной точки образца. Выбор этой точки можно производить визуально с помощью оптического микроскопа. Если образец и зонд неподвижны, а сканирует спектрометр, можно измерить весь спектр излучения образца и сделать полный анализ его состава в данной точке. Если зонд и спектрометр неподвижны, а образец сканирует, можно получить запись распределения вдоль линии сканирования того элемента, на который настроен спектрометр. Если спектрометр и образец неподвижны, а зонд (с помощью двух пар отклоняющих пластин и поданных на них переменных электрических потенциалов) сканирует по поверхности образца размером Спектральная аппаратура рентгеновская 0,4 × 0,4 мм2 синхронно со строчной развёрткой телевизионного устройства, на вход которого подан выходной потенциал детектора спектрометра, то на экране кинескопа будет получено сильно увеличенное изображение сканируемой поверхности в лучах того элемента, на который настроен спектрометр. Т. о. можно получить распределение данного элемента по исследуемому участку поверхности образца. В современных микроанализаторах часто используют два рентгеновских спектрометра: один - с кристаллом-анализатором, другой - с дифракционной решёткой. Это позволяет выполнить локальный анализ всех элементов, начиная с Li.

Лит.: Блохин М. А., Методы рентгено-спектральных исследований, М., 1959; Бирке Л. С., Рентгеновский микроанализ с помощью электронного зонда, пер. с англ., М., 1966; Блохин М. А., Рентгено-спектральная аппаратура, "Приборы и техника эксперимента", 1970, № 2; Зимкина Т. М., Фомичев В. А., Ультрамягкая рентгеновская спектроскопия, Л., 1971; Плотников Р. И., Пшеничный Г. А., Флюоресцентный рентгенорадиометрический анализ, М., 1973; Леман Е. П., Рентгенорадиометрический метод опробования месторождений цветных и редких металлов, Л., 1973; Электронно-зондовый микроанализ, пер. с англ., М., 1974.

М. А. Блохин.

Рис. 1. Оптические схемы рентгеновских спектрометров: а - фокусирующий спектрометр с кристаллом-анализатором К; б - фокусирующий спектрометр с дифракционной решёткой G; в - спектрометр с плоским кристаллом (коллиматором Соллера); s - источник излучения; S1 и S2 - щели; f - фокальная окружность; О' - её центр; О - центр окружности, по которой изогнут кристалл, или центр вогнутой поверхности решётки; D - детектор; Р - фотокатод; М - вторичный электронный умножитель; C1 и С2 - многопластинчатые коллиматоры.

Рис. 3. Схема рентгеноспектрального бездифракционного анализатора: 1 - изотопный источник; 2 - защитный экран; 3 - анализируемый образец; 4 - фильтр; 5 - детектор.

Рис. 2. Рентгеновский 12-канальный квантометр КРФ-18. Справа налево: оперативный стол, две стойки счёта импульсов - на 4 и 8 каналов, высоковольтный источник питания рентгеновской трубки, система автоматического управления и устройство вывода информации.

Спектральная линия поглощения         
  • линия поглощения
  • Сплошной спектр
  • линия излучения
Спектра́льная ли́ния поглоще́ния или тёмная спектра́льная ли́ния — особенность спектра, заключающаяся в понижении интенсивности излучения вблизи некоторой энергии.
Рентгеновская оптика         
  • Принцип работы капиллярного рентгеновского коллиматора
  • Многокапиллярная трубка для фокусировки рентгеновских лучей
  • Схема рентгеновского телескопа рентгеновской обсерватории космического аппарата [[XMM-Newton]]. Угол падения лучей очень близок к 90°.
Рентге́новская о́птика — отрасль прикладной оптики, изучающая процессы распространения рентгеновских лучей в средах, а также разрабатывающая элементы для рентгеновских приборов. Рентгеновская оптика, в отличие от обычной, рассматривает отражение и преломление электромагнитных волн в диапазоне длин волн рентгеновского 10−4 до 100 Å (от 10−14 до 10−8 м) и гамма-излучений < 10−4 Å.
Спектральная плотность излучения         
ХАРАКТЕРИСТИКА СПЕКТРА ИЗЛУЧЕНИЯ
Спектральная плотность интенсивности излучения; Излучательная способность; Испускательная способность; Спектральная испускательная способность; Спектральная излучательная способность; Спектральная плотность знергии излучения
Спектра́льная пло́тность излуче́ния — термин в фотометрии и теории электромагнитных волн, под которым, в зависимости от контекста, может пониматься одна из следующих физических величин:
Оконечное оборудование линии связи         
Оконечное оборудование линии связи (также аппаратура канала связи, АКС или аппаратура канала данных, АКД; = , или ) — оборудование, преобразующее данные, сформированные оконечным оборудованием в сигнал для передачи по линии связи и осуществляющее обратное преобразование.
Рентгеноанатомия         
Рентгеноанатомия (рентгеновская анатомия) — теоретическая дисциплина на стыке анатомии и рентгенологии, изучающая структурные закономерности рентгенографических изображений тела человека. Индивидуальные и возрастные рентгеноанатомические варианты строения рассматривает клиническая рентгеноанатомия.
Лазерная рентгеновская микроскопия         
Ла́зерная рентге́новская микроскопи́я (flash diffractive imaging, Femtosecond diffractive imaging) — разновидность рентгеноструктурного анализа, основанного на дифракции рентгеновских лучей на исследуемом объекте. В отличие от традиционного рентгеноструктурного анализа, исследуется одиночные молекулы и их сочетания.
ТЕЛЕМЕТРИЯ         
техника измерений на расстоянии. Телеметрия позволяет удовлетворить весьма важную потребность ученого, инженера, медицинского эксперта или иного пользователя в данных об удаленных объектах.
Области применения. В качестве одного из важных применений телеметрии можно назвать летные испытания новой модели самолета или другого летательного аппарата. Для оценки работоспособности конструкции и летных характеристик самолета нужно измерять расход топлива, характеристики работы двигателей, механические нагрузки, испытываемые фюзеляжем и крыльями, вибрации и температуры критически важных элементов летательного аппарата, параметры электронного оборудования самолета, траекторные данные. Средства телеметрии следят за измерениями во множестве точек, число которых составляет от нескольких сотен до нескольких тысяч, и предоставляют результаты измерений конструкторам на их наземные компьютеры или дисплейные терминалы. См. также АЭРОДИНАМИКА; АЭРОКОСМИЧЕСКИХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ КОНСТРУИРОВАНИЕ.
Система телеметрии космического летательного аппарата может обеспечить получение важных научных данных о поверхности, атмосфере или электромагнитном поле планет, а также следить за состоянием здоровья космонавтов. См. также ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ; КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ.
Некоторые зоны электроэнергетических установок и станций (особенно атомных) небезопасны для людей; вместе с тем параметры их рабочих режимов (такие, как температура, давление, расход охладителя) имеют критически важное значение для оценки режима работы и безопасности станции. Средства телеметрии в таких системах непрерывно следят за режимом работы и передают результаты измерений на дисплейные терминалы операторов станции. См. также АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ И РЕГУЛИРОВАНИЕ; ЭЛЕКТРИЧЕСКАЯ ЭНЕРГИЯ.
Во многих больницах осуществляется непрерывный контроль за состоянием больных с сердечной недостаточностью или с другими тяжелыми заболеваниями. Чтобы избежать необходимости иметь специалиста-медика у каждой койки, каждому больному устанавливают миниатюрный телеметрический передатчик, и за всеми больными ведется непрерывное наблюдение из одного места. См. также БИОЭЛЕКТРИЧЕСТВО
; СЕРДЦЕ
.
На месте, где произошел несчастный случай, группа медиков, приехавшая на машине скорой помощи, может установить привезенные с собой средства телеметрии. Благодаря этим средствам медицинские эксперты, находящиеся в травматологическом центре, получают возможность следить за критически важными измерениями и консультировать медперсонал, оказывающий первую помощь на месте происшествия и подготавливающий больного к транспортировке в больницу.
Стандарты. Наиболее сложные современные системы телеметрии используются в аэрокосмических исследованиях. Чтобы достичь некоторого уровня стандартизации, испытательные полигоны стремятся придерживаться системы стандартов, разработанных Межведомственной комиссией по измерительным средствам (IRIG).
Измерительные преобразователи. Результаты непосредственных измерений (температуры, давления, нагрузки, ускорения и т.д.) преобразуются в пропорциональное электрическое напряжение. К числу часто применяемых датчиков относятся датчики (преобразователи) давления и расхода, термопары, термометры сопротивления, мосты и потенциометры (см. также ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ; ТЕРМОЭЛЕКТРИЧЕСТВО). В типичную телеметрическую систему входит несколько разновидностей формирователей сигналов, каждый из которых используется для преобразования выходного сигнала того или иного конкретного преобразователя в стандартный сигнал напряжения от 5 до 10 В.
Мультиплексор. Система телеметрии воспринимает и ретранслирует электрические сигналы от многих датчиков одновременно благодаря процессу уплотнения данных, называемому мультиплексированием. В стандарте IRIG приняты три способа уплотнения данных: амплитудно-импульсная модуляция (АИМ), частотная модуляция (ЧМ) и импульсно-кодовая модуляция (ИКМ). ИКМ до сих пор является наиболее распространенной благодаря характерной для нее низкой вероятности ошибок (обычно менее 0,25% для любого измерения). ИКМ-система преобразует результат каждого измерения, выраженный аналоговым значением напряжения, в приемлемое для компьютера цифровое значение. В системе с использованием, например, 12-разрядных двоичных чисел самое малое напряжение будет представлено кодовым числом 000 000 000 000 (0), а самое большое - 111 111 111 111 (2047). Для подачи сигнала о начале каждого нового цикла сканирования датчиков и преобразователей генерируется специальная кодограмма.
Радиопередача и радиоприем. Комиссия IRIG определяет стандартные диапазоны частот для радиопередачи и приема в пределах от 1435 до 1540 МГц для пилотируемых летательных аппаратов и от 2200 до 2400 МГц для беспилотных. Типичный диапазон мощностей при радиопередаче ограничен пределами 1-10 Вт, поскольку для более высоких мощностей требовались бы передатчик слишком большого размера и массы, а также использование батарей.
На маневрирующем летательном аппарате, каким является самолет, для передачи данных используют всенаправленную антенну. Таким образом, сигнал можно принимать независимо от положения самолета. Чтобы компенсировать низкий уровень мощности при передачах со спутника или космического зонда, направленную антенну наводят на точку, в которой на земле находится приемная станция. Приемная антенна обычно представляет собой устройство автоматического слежения, которое принимает сигнал телеметрии и непрерывно сопровождает его источник, пользуясь информацией от радиоприемника, связанного с контролируемым объектом.
Запись и сохранение информации на магнитной ленте. В большинстве научных и технических приложений данные телеметрии записываются на магнитную ленту, даже если они одновременно исследуются аналитиками. Такая запись позволяет воспроизвести данные после завершения испытаний и, таким образом, более эффективно проанализировать их результаты. IRIG устанавливает стандарты на регистраторы показаний контрольно-измерительных приборов как в режиме обычной записи (вдоль длины ленты), так и в режиме наклонно-строчной записи (как при записи изображений). На ленте записывается также текущее время, что позволяет аналитику соотносить данные со временем при воспроизведении.
Демультиплексор. Демультиплексор в системе телеметрии распознает результаты измерений из данных, полученных по системе связи или взятых с магнитной ленты. В ИКМ-системе процесс демультиплексирования (разуплотнения) включает в себя отыскание кодограммы, которая вставляется в поток данных, чтобы сигнализировать о начале каждого цикла сканирования, после чего ведется подсчет битов для идентификации каждого измерения и подготовки его результата для ввода в компьютер.
Компьютер и воспроизведение на экране. Обработка телеметрических данных может быть сосредоточена на одном компьютере или выполняться на нескольких машинах. В любом случае результаты особенно важных измерений исследуются сразу же по получении. Их проверяют, чтобы убедиться в их достоверности и отсутствии отказов измерительного и телеметрического оборудования.
В типичном случае через 0,25 с после выполнения кодирования результат измерения воспроизводится на приемной станции для проведения экспресс-анализа. Любое отклонение от нормы отображается другим цветом и может инициировать сигнал звукового предупреждения, чтобы привлечь к данной ситуации внимание аналитика. Изображения на экране можно получать в одной из нескольких разных форм. Каждый пользователь может назначить по своему выбору воспроизведение результатов конкретных измерений в графическом или числовом виде. Телеметрическое оборудование воспроизведения обычно снабжено устройствами для копирования, позволяющими аналитику сделать дубликат записи любых представляющих интерес данных.
Компьютерные программы. Компьютерные программы, используемые в телеметрии, существенно отличаются от тех, которыми пользуются в менее ответственных применениях. Поскольку данные телеметрии поступают на приемную станцию многократно и иногда даже непрерывно, аппаратные и программные средства должны быть хорошо согласованы друг с другом. В типичных случаях аппаратные средства отрабатывают относительно простые и неоднократно повторяющиеся задания (примером могут служить установление синхронизации и реакция на возникновение тревожной ситуации); программные средства выполняют первичную обработку для воспроизведения данных на экране.
В задачи программного обеспечения входят настройка всех аппаратных и программных средств, высокоскоростной ввод данных, возможная предварительная проверка аппаратных средств, высокоскоростной вывод специально отобранных результатов измерений на дисплейные терминалы, форматирование дисплея и специальная обработка данных в соответствии с требованиями анализа. Программные средства также довольно часто используют, чтобы подготовить дисковый накопитель для работы со всеми или отобранными результатами измерений, для выборки данных с диска в целях проведения более детального анализа и для выполнения самодиагностики состояния системы телеметрии перед началом и в процессе приема данных.
DXC         
DXC (Digital cross-connector), Аппаратура оперативного переключения (АОП) — это семейство оборудования, используемого в сетях коммутации пакетов, обеспечивающего кросс-коммутацию, концентрацию и обработку трафика. Кросс-коннекторы поддерживают такие функции как кросс-коммутация, выделение, вставка, объединение, распределение каналов и др.
Спектральная плотность         
ПРЕДСТАВЛЕНИЕ СИГНАЛОВ И СЛУЧАЙНЫХ ПРОЦЕССОВ
Спектральная интенсивность

величины, характеризующей излучение (например, потока излучения (См. Поток излучения), силы света (См. Сила света)), отношение рассматриваемой величины, взятой в очень (более строго - бесконечно) малом интервале, содержащем данную длину волны λ, к ширине этого интервала dλ. Вместо λ могут использоваться частоты, волновые числа (См. Волновое число) или их логарифмы. В таких случаях термин "С. п." уточняется - говорят, например, о С. п. по частоте. График зависимости С. п. от длины волны λ или частоты ν характеризует распределение соответствующей величины по спектру.

Википедия

Оконечное оборудование линии связи

Оконечное оборудование линии связи (также аппаратура канала связи, АКС или аппаратура канала данных, АКД; англ. DCE = Data Circuit-terminating Equipment, Data Communication Equipment или Data Carrier Equipment) — оборудование, преобразующее данные, сформированные оконечным оборудованием в сигнал для передачи по линии связи и осуществляющее обратное преобразование.

Примером оконечного оборудования линии связи может служить обычный телефонный модем.