Строительные материалы - определение. Что такое Строительные материалы
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Строительные материалы - определение

МАТЕРИАЛЫ ДЛЯ ВОЗВЕДЕНИЯ И РЕМОНТА ЗДАНИЙ И СООРУЖЕНИЙ
Стройматериалы; Стройматериал; Строительный материал; Гипсобетон; Древесные плиты; Строительное изделие; Строительная порода; Оконное стекло
  • Британского музея]]
  • [[Кирпич]]
  • тодов]]
  • [[Эковата]]
Найдено результатов: 238
Строительные материалы         
I Строи́тельные материа́лы

природные и искусственные материалы и изделия, используемые при строительстве и ремонте зданий и сооружений. Различия в назначении и условиях эксплуатации зданий (сооружений) определяют разнообразные требования к С. м. и их обширную номенклатуру. Различают 2 основные категории С. м.: общего назначения (например, Цемент, Бетон, лесоматериалы), применяемые при возведении или изготовлении разнообразных строительных конструкций, и специального назначения (например, акустические, теплоизоляционные, огнеупорные материалы). По степени готовности С. м. условно делят на собственно С. м. (Вяжущие материалы, Заполнители и т.д.) и строительные изделия - готовые детали и элементы, монтируемые в здании на месте строительства (железобетонные панели, санитарно-технические кабины, дверные и оконные блоки и т.п.). Индустриализация и расширение масштабов современного строительства ведут к повышению доли готовых строительных изделий в общем объёме производства С. м. Увеличение выпуска С. м. в виде изделий, отличающихся высокой степенью заводской готовности, способствует росту производительности труда, снижению стоимости и ускорению темпов строительства (см. Полносборное строительство).

По совокупности технологических и эксплуатационных признаков С. м. принято подразделять на следующие основные группы.

Природные каменные материалы - горные породы, подвергнутые механической обработке (облицовочные плиты, стеновые камни, щебень, гравий, бутовый камень и др.). Внедрение прогрессивных методов добычи и обработки камня (например, алмазной распиловки, термообработки) существенно снижает трудоёмкость изготовления и стоимость каменных материалов (См. Каменные материалы) и расширяет объём их применения в строительстве.

Лесные материалы и изделия - С. м., получаемые главным образом механической обработкой древесины (круглый лес, пиломатериалы и заготовки, Паркет, Фанера и др.). В современном строительстве в большом масштабе используются пиломатериалы и заготовки для различных столярных изделий, встроенного оборудования зданий, погонажных изделий (плинтусов, поручней, накладок и др.). Перспективны клеёные изделия из древесины (см. Клеёные конструкции).

Керамические материалы и изделия изготовляют из глиносодержащего сырья посредством его формования, сушки и обжига. Широкий ассортимент, высокая прочность и долговечность керамических С. м. обусловливают разнообразные области их применения в строительстве: в качестве стеновых материалов (кирпич, керамические камни) и санитарно-технических изделий, для наружной и внутренней облицовки зданий (керамическая плитка) и др. К керамической С. м. относится также пористый заполнитель лёгких бетонов - Керамзит.

Неорганические вяжущие вещества - преимущественно порошкообразные материалы (цементы различных видов, Гипс, Известь и др.), образующие при смешении с водой пластичное тесто, приобретающее затем камневидное состояние. Один из важнейших неорганических вяжущих материалов - Портландцемент и его разновидности.

Бетоны и растворы - искусственные каменные материалы с широким диапазоном физико-механических и химических свойств, получаемые из смеси вяжущего вещества, воды и заполнителей. Основной вид бетона - Цементный бетон. Наряду с ним в современном строительстве применяют изделия из силикатного бетона (См. Силикатный бетон). Весьма эффективны лёгкие бетоны, используемые для изготовления крупноразмерных сборных конструкций и изделий. Для увеличения прочности конструктивных элементов на изгиб и растяжение используют материал, представляющий собой сочетание бетона со стальной арматурой - Железобетон. Бетоны и строительные Растворы применяют непосредственно на строительных объектах (монолитный бетон), а также для изготовления строительных изделий в заводских условиях (сборный железобетон). К этой же группе С. м. относятся Асбестоцементные изделия и конструкции, получаемые из цементного теста, армированного асбестовым волокном.

Металлы. В строительстве применяют в основном стальной прокат. Сталь используют для изготовления арматуры в железобетоне, каркасов зданий, пролётных строений мостов, трубопроводов, отопительных приборов, как кровельный материал (кровельная сталь) и т.д. Получают распространение в качестве конструкционных и отделочных С. м. Алюминиевые сплавы.

Теплоизоляционные материалы - С. м., применяемые для теплоизоляции ограждающих конструкций зданий, сооружений, промышленного оборудования, трубопроводов. В эту группу входит большое количество разнообразных по составу и строению материалов: минеральная вата и изделия из неё, ячеистые бетоны, асбестовые материалы, пеностекло, вспученные Перлит и Вермикулит, древесноволокнистые плиты, камышит, фибролит и др. Использование теплоизоляционных С. м. в ограждающих конструкциях позволяет значительно снизить массу последних, уменьшить общий расход материалов и сократить энергозатраты на поддержание необходимого теплового режима здания (сооружения). Некоторые теплоизоляционные материалы находят применение в качестве акустических материалов (См. Акустические материалы).

Стекло. Применяется главным образом для устройства светопрозрачных ограждений. Наряду с обычным листовым стеклом выпускаются стекло специального назначения (армированное, закалённое, теплозащитное и др.) и стеклянные изделия (Стеклоблоки, Стеклопрофилит, стеклянные облицовочные плитки и др.). Перспективно использование стекла для наружной отделки зданий (стемалит и др.). По технологическим признакам к стеклянным С. м. относят также Каменное литьё, Ситаллы и Шлакоситаллы.

Органические вяжущие вещества и гидроизоляционные материалы- Битумы, дёгти (См. Дёготь) и получаемые на их основе Асфальтобетон, Рубероид, Толь и др. материалы; к этой группе С. м. относятся также полимерные вяжущие, используемые для получения Полимербетонов. Для нужд сборного домостроения выпускают герметизирующие материалы в виде мастик и эластичных прокладок (гернит, изол, пороизол и др.), а также гидроизоляционные полимерные плёнки.

Полимерные С. м. - большая группа материалов, получаемых на основе синтетических полимеров. Они отличаются высокими механическими и декоративными свойствами, водо- и химической стойкостью, технологичностью. Основные области их применения: в качестве материалов для покрытия полов (Линолеум, Релин, поливинилхлоридные плитки и др.), конструкционных и отделочных материалов (бумажнослоистый пластик, Стеклопластики, древесностружечные плиты, декоративные плёнки и др.), тепло- и звукоизоляционных материалов (Пенопласты, сотопласты), погонажных строительных изделий.

Лаки и краски - отделочные С. м. на органических и неорганических связующих, образующие на поверхности окрашиваемой конструкции декоративное и защитное покрытия. Широкое распространение получают синтетические лакокрасочные материалы и водоэмульсионные краски на полимерном связующем.

Качество С. м. характеризуется их маркой - величиной, определяющей основной эксплуатационный показатель С. м. (например, прочность, объёмную массу, морозостойкость) или совокупность нескольких показателей. Методы испытаний С. м. и технические требования к ним устанавливаются стандартами (в СССР - ГОСТами) и техническими условиями (ТУ).

Затраты на С. м. в современном строительстве СССР составляют около 60\% общей стоимости строительства, поэтому дальнейшее повышение эффективности строительства в значительной мере связано с расширением областей применения новых, преимущественно лёгких С. м. (лёгких бетонов, полимерных материалов, металлических конструкций на основе лёгких сплавов и др.), с увеличением выпуска специальных С. м. (быстротвердеющих цементов, эффективных теплоизоляционных материалов и др.) и повышением качества традиционных С. м. Важный резерв снижения стоимости строительства - расширенное использование местных строительных материалов (например, стеновых камней из лёгких горных пород - туфа, ракушечника и др.) и утилизация отходов промышленности (металлургических шлаков, зол ТЭС, отходов деревообработки и др.). Существенное направление в совершенствовании С. м. - создание эффективных отделочных материалов, позволяющих улучшить архитектурно-декоративный облик зданий и сооружений. См. также Строительных материалов промышленность.

Лит.: Строительные материалы, под ред. М. И. Хигеровпча, М,, 1970; Комар А. Г., Строительные материалы и изделия, 2 изд., М., 1971; Воробьев В. А., Строительные материалы, 5 изд., М., 1973; Коровников Б. Д., Строительные материалы, М., 1974.

Г. И. Горчаков, К. Н. Попов.

II Строи́тельные материа́лы ("Строи́тельные материа́лы", )

ежемесячный научно-технический и производственный журнал, орган министерства промышленности строительных материалов СССР. Издаётся в Москве с 1955 (до 1957 выходил под названием "Строительные материалы, изделия и конструкции"). Журнал освещает актуальные научные, технические и экономические проблемы развития промышленности строительных материалов, вопросы проектирования и строительства предприятий этой отрасли производства, изготовления и применения различных материалов. Тираж (1976) около 25 тыс. экз.

СТРОЙМАТЕРИАЛЫ         
Сокращение: строительные материалы.
Гипсобетон         

гипсовый бетон, вид бетона, изготовляемого на основе гипсовых вяжущих материалов (См. Гипсовые вяжущие материалы) (главным образом строительного гипса). Применяется для производства гипсобетонных изделий (см. Гипсовые и гипсобетонные изделия). Для изготовления Г. используются каменные минеральные (преимущественно с пористой и шероховатой поверхностью) и органические (древесные опилки, сечка соломы и пр.) заполнители. В Г. вводятся добавки, замедляющие схватывание, а также повышающие его водо- и атмосферостойкость. Прочность Г. зависит от тех же факторов, что и прочность обычного цементного бетона (см. Бетон).

стройматериалы         
мн.
Строительные материалы.
Сверхтвёрдые материалы         
Сверхтвердые материалы
Сверхтвёрдые материа́лы — группа веществ, обладающих высочайшей твердостью, к которой относят материалы, твёрдость и износоустойчивость которых превышает твёрдость и износоустойчивость твёрдых сплавов на основе карбида вольфрама и карбида титана с кобальтовой и никель-молибденовой связкой. Микротвердость таких материалов более 35 ГПа при измерении методом Виккерса с помощью алмазной четырехгранной пирамиды, то есть больше чем у нитрида бора.
POS-материалы         
Pos-материалы
POS-материалы (, POS ←  «место продажи») — это материалы, способствующие продвижению бренда или товара в местах продаж (световые панели, шелфтокеры, ценникодержатели, воблеры, ценники, стопперы, промостойки, клик рамки, рамки для плакатов и постеров, фреймлайты, диспенсеры, пластиковые лотки, флажки, упаковка, выкраска, наклейки, декоративные магниты, подставки под кружки, чашки, стаканы, постеры, пластиковые папки, портфели, бирки, календарики, открытки, блокноты, линейки, брелоки, закладки и иные сувенирные изделия, распространяемые в местах продаж). POS-мате
Электроизоляционные материалы         
Электроизоляционные материалы; Электротехнический фарфор

материалы, применяемые в электротехнических и радиотехнических устройствах для разделения токоведущих частей, имеющих разные потенциалы, для увеличения ёмкости конденсаторов, а также служащие теплопроводящей средой в электрических машинах, аппаратах и т. п. В качестве Э. м. используют Диэлектрики, которые по сравнению с проводниковыми материалами обладают значительно большим удельным объёмным электрическим сопротивлением ρv = 109-1020 ом·см (у проводников 10-6-10-4 ом·см). Основные характеристики Э. м.: удельное объёмное и поверхностное сопротивления ρv и ρs, относительная Диэлектрическая проницаемость ε, температурный коэффициент диэлектрической проницаемости 1/ε·dε/dTград-1, угол диэлектрических потерь δ, электрическая прочность Епр (напряжённость электрического поля, при которой происходит пробой, см. Пробой диэлектриков). При оценке Э. м. учитывают также зависимость этих характеристик от частоты электрического тока и величины напряжения.

Э. м. можно классифицировать по нескольким признакам: агрегатному состоянию, химическому составу, способам получения и т. д. В зависимости от агрегатного состояния различают твёрдые, жидкие и газообразные Э. м. Твёрдые Э. м. составляют наиболее обширную группу и в соответствии с физико-химическими свойствами, структурой, особенностями производства делятся на ряд подгрупп, например слоистые пластики, бумаги и ткани, лакоткани, слюды и материалы на их основе, электрокерамические и др. К этим же материалам условно можно отнести лаки, заливочные и пропиточные составы, которые, хотя и находятся в жидком состоянии, но используются в качестве Э. м. в затвердевшем состоянии. Электрическая прочность твёрдых Э. м. (при 20 °С и частоте электрического тока 50 гц) лежит в пределах от 1 Мв/м (например, для некоторых материалов на основе смол) до 120 Мв/м (например, для полиэтилентерефталата). (О применении и получении твёрдых Э. м. см. в ст. Изоляция электрическая, Изолятор, Лаки, Слюда (См. Слюды), Стеклопластики, Пластические массы, Компаунды полимерные, Смолы синтетические.) Жидкие Э. м. - Электроизоляционные масла, в том числе нефтяные, растительные и синтетические. Отдельные виды жидких Э. м. отличаются друг от друга Вязкостью и имеют различные по величине электрические характеристики. Лучшими электрическими свойствами обладают конденсаторные и кабельные масла. Электрическая прочность жидких Э. м. при 20 °С и частоте 50 гц обычно находится в пределах 12-25 Мв/м, например для трансформаторных масел 15-20 Мв/м (см. также Жидкие диэлектрики). Существуют полужидкие Э. м. - Вазелины. Газообразные Э. м. - воздух, элегаз (гексафторид серы), фреон-21 (дихлорфторметан). Воздух является естественным изолятором (воздушные промежутки в электрических машинах, аппаратах и т. п.), обладает электрической прочностью около 3 Мв/м. Элегаз и фреон-21 имеют электрическую прочность около 7,5 Мв/м, применяются в качестве Э. м. в основном в кабелях и различных электрических аппаратах.

По химическому составу различают органические и неорганические Э. м. Наиболее распространённые Э. м. - неорганические (слюда, керамика и пр.). В качестве Э. м. используют природные (естественные) материалы и искусственные (синтетические) материалы. Искусственные Э. м. можно создавать с заданным набором необходимых электрических и физико-химических свойств, поэтому такие Э. м. наиболее широко применяют в электротехнике и радиотехнике. В соответствии с электрическими свойствами молекул вещества различают полярные (дипольные) и неполярные (нейтральные) Э. м. К полярным Э. м. относятся бакелиты, совол, галовакс, поливинилхлорид, многие кремнийорганические материалы; к неполярным - водород, бензол, четырёххлористый углерод, полистирол, парафин и др. Полярные Э. м. отличаются повышенной диэлектрической проницаемостью и несколько повышенной электрической проводимостью и гигроскопичностью.

Для твёрдых Э. м. большое значение имеют механические свойства: прочность при растяжении и сжатии, при статическом и динамическом изгибе, твёрдость, обрабатываемость, а также тепловые свойства (теплостойкость и нагревостойкость), влагопроницаемость, гигроскопичность, искростойкость и др. Теплостойкость характеризует верхний предел температур, при которых Э. м. способны сохранять свои механические и эксплуатационные свойства. Нагревостойкость Э. м. - способность выдерживать воздействие высоких температур (от 90 до 250 °С) без заметных изменений электрических характеристик материала. В электромашиностроении принято деление Э. м. на 7 классов. Наиболее нагревостойкие Э. м. - неорганические материалы (слюда, фарфор, стекло без связующих или с элементоорганическими связующими). Для хрупких материалов (стекло, фарфор) важна также способность выдерживать перепады температур. Осуществляя электрическое разделение проводников, Э. м. в то же время не должны препятствовать отводу тепла от обмоток, сердечников и других элементов электрических машин и установок. Поэтому важным свойством Э. м. является теплопроводность. Для повышения коэффициента теплопроводности в жидкие Э. м. добавляют минеральные наполнители. Большинство Э. м. в той или иной мере поглощают влагу (гигроскопичны). Для повышения влагонепроницаемости пористые Э. м. пропитывают маслами, синтетическими жидкостями, компаундами. К абсолютно влагостойким можно отнести лишь глазурованный фарфор, стекло и т. п.

Лит.: Электротехнический справочник, 5 изд., т. 1, М., 1974.

А. И. Хоменко.

Изоляционные материалы         
Электроизоляционные материалы; Электротехнический фарфор
Электроизоляционные материалы (диэлектрические материа́лы, диэлектрики, изоляторы) — конструкционные материалы и среды, служащие для изолирования проводников, то есть их электрического разъединения и защиты от внешних воздействий. Основное свойство этих материалов — создание препятствия протеканию электрического тока проводимости (постоянного и переменного).
ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ         
Электроизоляционные материалы; Электротехнический фарфор
применяются в электротехнических, радиотехнических и электронных приборах и устройствах для разделения токопроводящих частей, находящихся под разными потенциалами, и защиты от действия электрического тока; относятся к диэлектрическим материалам. Электроизоляционные материалы используются также в конденсаторах и в качестве теплопроводящей среды в электрических машинах, аппаратах и т. п. Различают электроизоляционные материалы твердые (бумаги, слюды, лакоткани и т. д.), жидкие (напр., трансформаторные масла) и газообразные (воздух, элегаз и др.). См. также Изоляция электрическая.
ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ         
Электроизоляционные материалы; Электротехнический фарфор
изоляторы - газообразные, жидкие или твердые материалы, которые не проводят электрический ток.
Газообразные изоляторы. Коронный разряд. Одним из наиболее известных и распространенных изоляторов является воздух при атмосферном давлении и нормальной температуре. Для низких напряжений удельное электрическое сопротивление такого воздуха составляет ок. 1018 Ом?см. Когда напряженность электрического поля поперек однородной воздушной щели достигает 30 кВ/см, проводимость увеличивается, так как начинается фотоионизация воздуха и в конце концов между электродами проскакивает искра. Если геометрия электродов разнородна, как, например, в случае острия и плоскости или провода линии электропередачи над поверхностью земли, вокруг острия или провода при достаточно большой напряженности электрического поля возникает светящаяся область ионизованного воздуха, называемая коронным разрядом. Ток коронного разряда возрастает с увеличением напряжения, и в конце концов возникает искра или дуга в зависимости от мощности источника и сопротивления внешней цепи.
Электрическая прочность. Повышение давления воздуха приводит к увеличению напряжения коронного разряда и напряженности электрического поля, при которой происходит пробой для рассматриваемой системы электродов. Согласно закону Пашена, в однородном электрическом поле напряжение пробоя не изменится, если при уменьшении межэлектродного зазора во столько же раз увеличить давление газа в зазоре. Такие распространенные газы, как азот, кислород и двуокись углерода, по своей изолирующей способности близки к воздуху при атмосферном давлении. Некоторые пары, особенно те, что содержат серу, хлор или фтор, такие, как гексафторид серы (SF6), четыреххлористый углерод (CCl4) и фреон-12 (CCl2F2), имеют втрое большую электрическую прочность, чем воздух при том же давлении. Влияние давления на напряжение пробоя для некоторых материалов показано на рисунке.
Электроизолирующие свойства газов оказываются наихудшими при давлениях от 1 до 0,01 кПа. Прохождение тока через газ при таких давлениях сопровождается ярким свечением (например, в ртутных или неоновых лампах). Это явление называется тлеющим разрядом.
Жидкие диэлектрики. Органические соединения, в частности углеводороды, широко используются в качестве жидких диэлектриков. Для углеводородов характерны низкая диэлектрическая проницаемость (от 2 до 4) и умеренно высокое удельное электрическое сопротивление (ок. 1012 Ом?см). Поскольку углеводороды не содержат кислорода или азота, они являются химически стабильными и поэтому подходят для использования в сильных электрических полях, в которых процессы ионизации усиливают химическую нестабильность. Примерами жидких диэлектриков могут служить циклические углеводороды, такие, как бензол (C6H6), или ациклические соединения типа гексана . Большинство углеводородов встречаются в виде смесей; химический состав и строение входящих в них компонентов точно не известны. К ним относятся, в порядке возрастания вязкости, петролейный эфир, парафиновое масло, трансформаторные масла, парафин и различные воски.
Некоторые галогенопроизводные продукты, такие, как хлороформ (CHCl3) и четыреххлористый углерод (CCl4), являются диэлектриками. К жидким неорганическим диэлектрикам относятся такие сжиженные газы, как двуокись углерода и хлор.
Важным преимуществом жидких диэлектриков является их способность к восстановлению своих свойств после искрового пробоя и способность проводить тепло, что важно для трансформаторов.
Твердые диэлектрики. К типичным твердым электроизоляционным материалам относятся фарфор, стекло, кварц, натуральная и синтетическая резина и пластики. Тонкие слои твердых изоляторов могут иметь очень высокие значения напряжения пробоя и удельного электрического сопротивления, что видно из приводимой ниже таблицы.
Повышение приложенной разности потенциалов к рассматриваемому образцу твердого или жидкого диэлектрика увеличивает ток через него. Это увеличение приводит к отрыву электронов и образованию пространственного положительного заряда вблизи катода. Электрический пробой является результатом искажения электрического поля внутри изолятора. Как твердые, так и жидкие диэлектрики подвержены поляризации, т.е. их диэлектрическая постоянная больше единицы. Поляризация приводит к появлению диэлектрических потерь при приложении переменных электрических полей. Некоторые материалы, такие, как кварц, полиэтилен и некоторые газы, имеют очень низкие диэлектрические потери даже в высокочастотных электрических полях.
Вакуум как изолятор. Когда металлические электроды помещены в газ с давлением меньше 10?2 Па, молекул газа недостаточно для образования заметного тока в межэлектродном зазоре, и в этом случае говорят об изоляции высоким вакуумом. Ионизация молекул остаточного газа при соударении с электронами или положительно заряженными ионами, вылетающими с электродов, при таких давлениях происходит редко. В условиях высокого вакуума при постоянном напряжении ниже 20 кВ на поверхности катода пробой может не наступать при напряженности поля до 5 МВ/см, а на аноде - при напряженности в несколько раз большей. Однако при более высоких напряжениях катодный градиент, при котором наступает пробой, быстро уменьшается. Пробой между металлическими электродами в вакууме происходит из-за обмена заряженными частицами между катодом и анодом. Электрон, вылетающий из катода, ускоряется электрическим полем и ударяет в анод, выбивая положительные ионы и фотоны. Положительные ионы и часть фотонов попадают на катод; ионы ускоряются электрическим полем и вызывают эмиссию вторичных электронов. При некотором критическом значении напряжения и градиента электрического поля для данного материала электродов этот процесс становится неустойчивым, и происходит искровой пробой.
Изоляция высоким вакуумом особенно широко применяется в электронике как для ускорения электронов низкой энергии в обычных электровакуумных приборах, так и для высоковольтных приложений в рентгеновских приборах и ускорителях для ядерных исследований.
Конденсаторы. Диэлектрики находят широкое применение в конденсаторах. Конденсаторы имеют многообразные применения, среди которых накопление электрического заряда, нейтрализация эффектов индуктивности в цепях переменного тока и получение импульсов тока для различных приложений. Емкость конденсатора часто может быть рассчитана исходя из конфигурации системы или измерена путем определения величины заряда на одной из обкладок конденсатора при приложении заданного напряжения между обкладками. Энергия заряженного конденсатора равна 1/2 CE2 и выражается в микроджоулях (мкДж), если С выражено в микрофарадах (мкФ), а Е - в вольтах (В).
Низковольтные конденсаторы. Для слаботочных и низковольтных приложений, таких, как радио- и телефонные сети и низковольтные выпрямители, конденсаторы изготавливаются обычно из слоев алюминиевой или другой металлической фольги, разделенных диэлектриком из одного или нескольких слоев пропарафиненной бумаги. Очень компактный низковольтный конденсатор - т.н. электролитический - изготавливается нанесением (посредством электролитического осаждения) тонкой изолирующей оксидной пленки на поверхность металлической фольги; при этом достигается достаточно высокая емкость на единицу площади поверхности конденсатора. Полученный материал наматывается в виде обмотки компактных размеров.
Высоковольтные конденсаторы. В конденсаторах для высоких напряжений, которые используются в радиопередающих устройствах, в качестве изолятора часто применяется слюда. Конденсаторы для очень высоких напряжений обычно изготавливаются из металлической фольги с большим числом слоев диэлектрической бумаги, помещенных в заполненный маслом контейнер, или из металлических пластин, разделенных газообразным или жидким диэлектриком. В таких конструкциях для высокочастотных конденсаторов, в которых важно иметь низкие диэлектрические потери, в качестве диэлектрика используется и вакуум. См. также ЭЛЕКТРИЧЕСКАЯ ЭНЕРГИЯ
.

Википедия

Строительные материалы

Строи́тельные материа́лы (стройматериалы) — материалы, применяемые в строительстве для постройки, ремонта и реконструкции сооружений.

Что такое Строительные материалы - определение