Стьюдента распределение - определение. Что такое Стьюдента распределение
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Стьюдента распределение - определение

Стьюдента распределение; T-распределение; T-распределение Стьюдента
  • 325px
  • 325px
  • 10 степеней свободы
  • 1 степень свободы
  • 2 степени свободы
  • 30 степеней свободы
  • 3 степени свободы
  • 5 степеней свободы
Найдено результатов: 77
Стьюдента распределение         

с f степенями свободы, распределение отношения Т = X/Y независимых случайных величин Х и Y, где Х подчиняется нормальному распределению (См. Нормальное распределение) с математическим ожиданием EX = 0 и дисперсией DX = 1, а fY2 имеет "Хи-квадрат" распределение (См. Хи-квадрат распределение) с f степенями свободы. Функция распределения Стьюдента выражается интегралом

.

Если X1,..., Xn - независимые случайные величины, одинаково нормально распределённые, причём EXi = a и DXi= σ2 (i = 1,..., n), то при любых действительных значениях а и σ > 0 отношение подчиняется С. р. с f = п-1 степенями свободы (здесь и ). Это свойство было впервые (1908) использовано для решения важной задачи классической теории ошибок У. Госсетом (Англия), писавшим под псевдонимом Стьюдент (Student). Суть этой задачи заключается в проверке гипотезы а = a0 (a0 = заданное число, дисперсия σ2 предполагается неизвестной). Гипотезу а =a0 считают не противоречащей результатам наблюдений X1,..., Xn, если справедливо неравенство , в противном случае гипотеза а = а0 отвергается (так называемый критерий Стьюдента). Критическое значение t = tn-1(α) представляет собой решение уравнения Sn-1(t) = 1 -,α - çàäàííûé Çíà÷èìîñòè óðîâåíü (0 < . < 1/2). Если проверяемая гипотеза а = а0 верна, то критерий Стьюдента, соответствующий критическому значению tn-1(α), может её ошибочно отвергнуть с вероятностью а.

С. р. используется для решения множества др. задач математической статистики (см. Малые выборки, Ошибок теория, Наименьших квадратов метод).

Лит.: Крамер Г., Математические методы статистики, пер. с англ., 2 изд., М., 1975.

Квантили распределения Стьюдента         
Кванти́ли распределе́ния Стью́дента (коэффициенты Стьюдента) — числовые характеристики, широко используемые в задачах математической статистики, таких как построение доверительных интервалов и проверка статистических гипотез.
Стьюдента критерий         

статистическое правило проверки гипотез (см. Статистическая проверка гипотез), основанное на Стьюдента распределении (См. Стьюдента распределение).

T-критерий Стьюдента         
t-критерий Стьюдента — общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.
НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ         
  • Функция распределения нормального распределения
ПРЕДЕЛ РАСПРЕДЕЛЕНИЯ СУММИРУЕМЫХ СЛУЧАЙНЫХ ВЕЛИЧИН
Распределение Гаусса; Гауссово распределение; Стандартное нормальное распределение; Нормальная случайная величина; Гаусса распределение; Гауссовское распределение; Колоколообразное распределение; Гауссов шум; Гауссовый шум
(распределение Гаусса) , распределение вероятностей случайной величины Х, характеризуемой плотностью вероятности где a - математическое ожидание, ?2 - дисперсия случайной величины Х. Возникает нормальное распределение, когда данная случайная величина представляет собой сумму большого числа независимых случайных величин, каждая из которых играет в образовании всей суммы незначительную роль.
ГАУССА РАСПРЕДЕЛЕНИЕ         
  • Функция распределения нормального распределения
ПРЕДЕЛ РАСПРЕДЕЛЕНИЯ СУММИРУЕМЫХ СЛУЧАЙНЫХ ВЕЛИЧИН
Распределение Гаусса; Гауссово распределение; Стандартное нормальное распределение; Нормальная случайная величина; Гаусса распределение; Гауссовское распределение; Колоколообразное распределение; Гауссов шум; Гауссовый шум
(Гаусса закон распределения вероятностей) , то же, что нормальное распределение.
Распределение Коши         
  • Cumulative distribution function for the Normal distribution
Распределе́ние Коши́ в теории вероятностей (также называемое в физике распределе́нием Ло́ренца и распределе́нием Бре́йта — Ви́гнера) — класс абсолютно непрерывных распределений. Случайная величина, имеющая распределение Коши, является стандартным примером величины, не имеющей математического ожидания и дисперсии.
Коши распределение         
  • Cumulative distribution function for the Normal distribution

специальный вид распределения вероятностей случайных величин. Введено О. Коши; характеризуется плотностью

p (x) = , λ > 0;

характеристическая функция

К. р. - унимодально и симметрично относительно точки х = μ, являющейся его модой (См. Мода) и медианой (См. Медиана). Ни один из моментов, К. р. положительного порядка не существует. На рис. дано К. р. при μ = 1,5, λ = 1.

Распределение Коши: а - плотность вероятности; б - функция распределения.

Гаусса распределение         
  • Функция распределения нормального распределения
ПРЕДЕЛ РАСПРЕДЕЛЕНИЯ СУММИРУЕМЫХ СЛУЧАЙНЫХ ВЕЛИЧИН
Распределение Гаусса; Гауссово распределение; Стандартное нормальное распределение; Нормальная случайная величина; Гаусса распределение; Гауссовское распределение; Колоколообразное распределение; Гауссов шум; Гауссовый шум

закон распределения вероятностей; то же, что Нормальное распределение.

Нормальное распределение         
  • Функция распределения нормального распределения
ПРЕДЕЛ РАСПРЕДЕЛЕНИЯ СУММИРУЕМЫХ СЛУЧАЙНЫХ ВЕЛИЧИН
Распределение Гаусса; Гауссово распределение; Стандартное нормальное распределение; Нормальная случайная величина; Гаусса распределение; Гауссовское распределение; Колоколообразное распределение; Гауссов шум; Гауссовый шум

одно из важнейших распределений (См. Распределение) вероятностей. Термин "Н. р." применяют как по отношению к распределениям вероятностей случайных величин, так и по отношению к совместным распределениям вероятностей нескольких случайных величин (т. е. к распредслениям случайных векторов).

Распределение вероятностей случайной величины Х называется нормальным, если оно имеет Плотность вероятности

. (*)

Семейство Н. р. (*) зависит, т. о., от двух параметров а и σ. При этом Математическое ожидание Х равно а, Дисперсия Х равна σ2. Кривая Н. р. у = р (х; а, σ) симметрична относительно ординаты, проходящей через точку х = а, и имеет в этой точке единственный максимум, равный . С уменьшением σ кривая Н. р. становится всё более и более островершинной (см. рис.). Изменение а при постоянном σ не меняет форму кривой, а вызывает лишь её смещение по оси абсцисс. Площадь, заключённая под кривой Н. р., всегда равна единице. При a = 0, σ = 1 соответствуюшая функция распределения равна

.

В общем случае функция распределения Н. р. (*) F (х; а, σ) может быть вычислена по формуле F (x; а, σ) = Ф (t), где t = (х - а)/σ. Для функции Ф (t) (и нескольких её производных) составлены обширные таблицы. Для Н. р. вероятность неравенства , равная 1- Ф (k)+ Ф (- k), убывает весьма быстро с ростом k (см. таблицу).

------------------------------------

| k | Вероятность |

|----------------------------------|

| 1 | 0,31731 |

|----------------------------------|

| 2 | 0,04550 |

|----------------------------------|

| 3 | 0,00269 |

|----------------------------------|

| 4 | 0,00006 |

------------------------------------

Во многих практических вопросах при рассмотрении Н. р. пренебрегают поэтому возможностью отклонений от а, превышающих 3σ, - т. н. правило трёх сигма (соответствующая вероятность, как видно из таблицы, меньше 0,003). Вероятное отклонение для Н. р. равно 0,67449σ.

Н. р. встречается в большом числе приложений. Издавна известны попытки объяснения этого обстоятельства. Теоретическое обоснование исключительной роли Н. р. дают Предельные теоремы теории вероятностей (см. также Лапласа теорема, Ляпунова теорема). Качественно соответствующий результат может быть объяснён следующим образом: Н. р. служит хорошим приближением каждый раз, когда рассматриваемая случайная величина представляет собой сумму большого числа независимых случайных величин, максимальная из которых мала по сравнению со всей суммой.

Н. р. может появляться также как точное решение некоторых задач (в рамках принятой математической модели явления). Так обстоит дело в теории случайных процессов (См. Случайный процесс) (в одной из основных моделей броуновского движения (См. Броуновское движение)). Классические примеры возникновения Н. р. как точного принадлежат К. Гауссу (закон распределения ошибок наблюдения) и Дж. Максвеллу (закон распределения скоростей молекул).

Совместное распределение нескольких случайных величин X1, X2,..., Xs называется нормальным (многомерным нормальным), если соответствующая плотность вероятности имеет вид:

, где ,

qk, l = ql, k - положительно определенная квадратичная форма. Постоянная С определяется из того условия, что интеграл от р по всему пространству равен 1. Параметры a1,..., as равны математическим ожиданиям X1,..., Xs соответственно, а коэффициент qk, l могут быть выражены через дисперсии σ12,..., σs2 этих величин и коэффициент корреляции (См. Корреляция) σk, l между Xk и Xl. Общее количество параметров, задающих Н. р., равно

(s + 1)(s + 2)/2 - 1

и быстро растет с ростом s (оно равно 2 при s = 1, 20 при s = 5 и 65 при s = 10). Многомерное Н. р. служит основной моделью статистического анализа многомерного (См. Статистический анализ многомерный). Оно используется также в теории случайных процессов (где рассматривают также Н. р. в бесконечномерных пространствах).

О вопросах, связанных с оценкой параметров Н. р. по результатам наблюдений, см. статьи Малые выборки и Несмещенная оценка (См. Несмещённая оценка). О проверке гипотезы нормальности см. Непараметрические методы (в математической статистике).

Лит. см. при ст. Распределения.

Ю. В. Прохоров.

Кривые плотности нормального распределения для различных значений параметров а и σ: I. а = 0, σ = 2,5; II. a = 0, σ = 1; III. a = 0, σ = 0,4; IV. a = 3, σ = 1.

Википедия

Распределение Стьюдента

Распределе́ние Стью́дента ( t {\displaystyle t} -распределение) в теории вероятностей — это однопараметрическое семейство абсолютно непрерывных распределений. Уильям Сили Госсет первым опубликовал работы, посвящённые этому распределению, под псевдонимом «Стьюдент».

Распределение Стьюдента играет важную роль в статистическом анализе и используется, например, в t-критерии Стьюдента для оценки статистической значимости разности двух выборочных средних, при построении доверительного интервала для математического ожидания нормальной совокупности при неизвестной дисперсии, а также в линейном регрессионном анализе. Распределение Стьюдента также появляется в байесовском анализе данных, распределённых по нормальному закону.

График плотности распределения Стьюдента, как и нормального распределения, является симметричным и имеет вид колокола, но с более «тяжёлыми» хвостами, то есть реализациям случайной величины, имеющей распределение Стьюдента, более свойственно сильно отличаться от математического ожидания. Это делает его важным для понимания статистического поведения определённых типов отношений случайных величин, в которых отклонение в знаменателе увеличено и может производить отдалённые величины, когда знаменатель соотношения близок к нулю.

Распределение Стьюдента — частный случай обобщённого гиперболического распределения.