Сферические координаты - определение. Что такое Сферические координаты
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Сферические координаты - определение

НАБОР ИЗ 3 ЧИСЕЛ, ОПРЕДЕЛЯЮЩИХ ПОЛОЖЕНИЕ ТОЧКИ НА НЕКОЙ СФЕРЕ
Сферические координаты
  • Рис. 1.Точка имеет три декартовых и три сферических координаты
Найдено результатов: 105
Сферические координаты         

точки М, три числа r, θ, φ, которые определяются следующим образом. Через фиксированную точку О (рис.) проводятся три взаимно оси Ox, Оу, Oz. Число r равно расстоянию от точки О до точки М, θ представляет собой угол между вектором и положительным направлением оси Oz, φ - угол, на который надо повернуть против часовой стрелки положительную полуось Ox до совпадения с вектором (N - проекция точки М на плоскость хОу). С. к. точки М зависят, таким образом, от выбора точки О и трёх осей Ox, Оу, Oz. Связь С. к. с прямоугольными декартовыми координатами (См. Координаты) устанавливается следующими формулами:

, , .

С. к. имеют большое применение в математике и её приложениях к физике и технике.

Рис. к ст. Сферические координаты.

СФЕРИЧЕСКИЕ КООРДИНАТЫ         
точки M , три числа r, ?, ?, связанные с декартовыми координатами x, y, z этой точки формулами: x = r sin? cos?, y = r sin? sin?, z = r cos?. Сферические координаты имеют большое применение в математике и ее приложениях.
Сферическая система координат         
Сферическая система координат — трёхмерная система координат, в которой каждая точка пространства определяется тремя числами (r,\;\theta,\;\varphi), где r — расстояние до начала координат (радиальное расстояние), а \theta и \varphi — зенитный и азимутальный углы соответственно.
СФЕРИЧЕСКИЕ ФУНКЦИИ         
  • Вещественные сферические функции Y<sub>lm</sub>, ''l''=0…4 (сверху вниз), ''m''=0…4 (слева направо). Функции отрицательного порядка Y<sub>l-m</sub> повёрнуты вокруг оси ''Z'' на 90/''m'' градусов относительно функций положительного порядка.
  • Поворот вещественной сферической функции с m=0 и l=3. Коэффициенты не равны D-матрицам Вигнера, поскольку показаны вещественные функции, но могут быть получены при переразложении по комплексным функциям
  • Вещественные сферические функции до шестого порядка
Сферические гармоники; Сферическая гармоника
(шаровые) , специальные функции, применяемые для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями.
Сферические функции         
  • Вещественные сферические функции Y<sub>lm</sub>, ''l''=0…4 (сверху вниз), ''m''=0…4 (слева направо). Функции отрицательного порядка Y<sub>l-m</sub> повёрнуты вокруг оси ''Z'' на 90/''m'' градусов относительно функций положительного порядка.
  • Поворот вещественной сферической функции с m=0 и l=3. Коэффициенты не равны D-матрицам Вигнера, поскольку показаны вещественные функции, но могут быть получены при переразложении по комплексным функциям
  • Вещественные сферические функции до шестого порядка
Сферические гармоники; Сферическая гармоника

специальные функции, применяемые для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями, и для решения физических задач, обладающих сферической симметрией. С. ф. являются решениями дифференциального уравнения

,

получающегося при разделении переменных в Лапласа уравнении (См. Лапласа уравнение) в сферических координатах r, θ, φ. Общий вид решения:

,

где am - постоянные, - присоединённые функции Лежандра степени l и порядка m, определяемые равенством:

,

С. ф. можно рассматривать как функции на поверхности единичной сферы. Функции

образуют полную ортонормированную систему на сфере, играющую ту же роль в разложении функций на сфере, что тригонометрическая система функций {e imφ} на окружности. Функции на сфере, не зависящие от координаты φ, разлагаются по зональным С. ф.:

С. ф. степени l

при вращении сферы линейно преобразуется по формуле:

(1)

(q-1M - точка, в которую переходит точка М сферы при вращении q-1). Коэффициенты являются матричными элементами неприводимого унитарного представления веса l группы вращения сферы. Их называют также обобщёнными С. ф. Обобщённые С. ф. применяются при разложении векторных и тензорных полей на единичной сфере, решении некоторых задач теории упругости и т. д.

С формулой (1) связана теорема сложения для зональных С. ф.:

,

где cos γ = cos θ cos θ' + sinθ sinθ' cos (φ -φ'), γ - сферическое расстояние точки (θ, φ) от точки (θ', φ').

Характерным примером многочисленных приложений С. ф. к вопросам математической физики и механики является применение их в теории потенциала. Пусть - поверхностная плотность распределения массы по сфере радиуса R с центром в начале координат; если а можно разложить в ряд С. ф. , сходящийся равномерно на поверхности сферы, то потенциал, соответствующий этому распределению масс, в каждой точке (r, θ, φ), внешней относительно данной сферы, равен

а в каждой точке, внутренней по отношению к сфере, равен

Общий член каждого из этих двух рядов представляет собой шаровую функцию (См. Шаровые функции) соответственно степени n - 1 и n.

С. ф. были введены А. Лежандром и П. Лапласом в конце 18 в.

Лит.: Бейтмен Г., Эрдей и А., Высшие трансцендентные функции, пер. с англ., т. 1-2, М., 1973; Никифоров А. Ф., Уваров В. Б., Основы теории специальных функций, М., 1974; Гобсон Е. В., Теория сферических и эллипсоидальных функций, пер. с англ., М., 1952; Lense J., Kugelfunktionen, 2 Aufl., Lpz., 1954.

Сферические функции         
  • Вещественные сферические функции Y<sub>lm</sub>, ''l''=0…4 (сверху вниз), ''m''=0…4 (слева направо). Функции отрицательного порядка Y<sub>l-m</sub> повёрнуты вокруг оси ''Z'' на 90/''m'' градусов относительно функций положительного порядка.
  • Поворот вещественной сферической функции с m=0 и l=3. Коэффициенты не равны D-матрицам Вигнера, поскольку показаны вещественные функции, но могут быть получены при переразложении по комплексным функциям
  • Вещественные сферические функции до шестого порядка
Сферические гармоники; Сферическая гармоника
Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических
Трилинейная система координат         
Трилинейные координаты
Трилинейные координаты тесно связаны с барицентрическими координатами. А именно, если (\alpha:\beta:\gamma) — барицентрические координаты точки X относительно треугольника ABC, а a, b, c — длины его сторон, то
Однородные координаты         
Проективные координаты; Однородные координаты

точки, прямой и т.д., координаты, обладающие тем свойством, что определяемый ими объект не меняется, когда все координаты умножаются на одно и то же число. Например, О. к. точки М на плоскости могут служить три числа: X, Y, Z, связанные соотношением X : Y : Z = х : у : 1, где х и у - декартовы координаты точки М. Введение О. к. позволяет добавить к точкам евклидовой плоскости точки с третьей О. к., равной нулю (т. н. бесконечно удалённые точки), что важно для проективной геометрии (См. Проективная геометрия). См. также Координаты.

Однородная система координат         
Проективные координаты; Однородные координаты
Однородные координаты ― система координат, используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.
Биполярная система координат         
  • [[Окружности Аполлония]]
Биполярные координаты
Биполярные координаты — ортогональная система координат на плоскости, основанная на кругах Аполлония. Для перехода из биполярных координат в декартовы координаты, служат следующие формулы:

Википедия

Сферическая система координат

Сферическая система координат — трёхмерная система координат, в которой каждая точка пространства определяется тремя числами ( r , θ , φ ) {\displaystyle (r,\;\theta ,\;\varphi )} , где r {\displaystyle r}  — расстояние до начала координат (радиальное расстояние), а θ {\displaystyle \theta } и φ {\displaystyle \varphi }  — зенитный и азимутальный углы соответственно.

Понятия зенит и азимут широко используются в астрономии. Зенит — направление вертикального подъёма над произвольно выбранной точкой (точкой наблюдения), принадлежащей фундаментальной плоскости. В качестве фундаментальной плоскости в астрономии может быть выбрана плоскость, в которой лежит экватор, или плоскость, в которой лежит горизонт, или плоскость эклиптики и т. д., что порождает разные системы небесных координат. Азимут — угол между произвольно выбранным лучом фундаментальной плоскости с началом в точке наблюдения и другим лучом этой плоскости, имеющим общее начало с первым.

Если рассматривать сферическую систему координат относительно декартовой системы O x y z {\displaystyle Oxyz} , фундаментальной плоскостью будет плоскость x y {\displaystyle xy} , зенитным углом точки, заданной радиус-вектором P {\displaystyle P} , будет угол между P {\displaystyle P} и осью z {\displaystyle z} , а азимутом — угол между проекцией P {\displaystyle P} на плоскость x y {\displaystyle xy} и осью x {\displaystyle x} . Это объясняет названия углов и то, что сферическая система координат может служить обобщением множества видов систем небесных координат.