Теней эффект - определение. Что такое Теней эффект
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Теней эффект - определение

КОММУНА ВО ФРАНЦИИ
Теней
Найдено результатов: 456
ТЕНЕЙ ЭФФЕКТ      
возникновение характерных минимумов интенсивности (теней) в угловых распределениях продуктов ядерных реакций при облучении монокристаллов потоком ускоренных ядерных частиц. Тени возникают в направлениях кристаллографических осей и плоскостей.
Теней эффект      

возникновение характерных минимумов интенсивности (теней) в угловом распределении частиц, вылетающих из узлов решётки Монокристалла. Т. э. наблюдается для положительно заряженных тяжёлых частиц (протонов, дейтронов, более тяжёлых ионов). Тени образуются в направлениях кристаллографических осей и плоскостей. Появление тени в направлении кристаллографической оси (осевая тень) обусловлено отклонением частиц, первоначально вылетевших в направлении этой оси, внутриатомным электрическим полем ближайших к излучающему узлу атомов, расположенных в той же цепочке (рис. 1). Распределение относительной интенсивности частиц у в области тени изображено на рис. 2. Угловые размеры тени определяются соотношением:

,

где 2x0 - полуширина тени, eZ1 и Е - заряд и энергия движущейся частицы, eZ2 - заряд ядра атома кристалла, l - расстояние между соседними атомами цепочки. Интенсивность γ потока частиц в центре тени для совершенного кристалла (без дефектов) примерно в 100 раз меньше, чем на периферии.

Т. э. был обнаружен в 1964 независимо А. Ф. Тулиновым (СССР) и Б. Домеем и К. Бьёрквистом (Швеция), причём частицы, в пучке которых наблюдались тени, в этих работах имели различное происхождение. В экспериментах Тулинова это были продукты ядерных реакций на ядрах кристаллической мишени под действием ускоренных частиц. Домей и Бьёрквист вводили α-радиоактивные ядра в узлы кристаллической решётки (методом ионной имплантации) и наблюдали тени в угловом распределении вылетающих из кристалла α-частиц. Первый метод оказался более универсальным, и практически все последующие эксперименты проводились по его схеме. В частности, с помощью этого метода удалось наблюдать плоскостные тени, то есть области пониженной интенсивности частиц в направлении кристаллографических плоскостей, имеющие форму прямых линий. При регистрации плоскостных теней в качестве детектора часто используют ядерные фотографические эмульсии (См. Ядерная фотографическая эмульсия), так как с их помощью можно регистрировать теневую картину в большом телесном угле. На эмульсии возникает сложная теневая картина кристалла, называемая ионограммой (рис. 3).

Расположение пятен и линий на ионограмме зависит от структуры кристалла и геометрических условий опыта. Распределение интенсивности в пределах одной тени (осевой или плоскостной) определяется многими факторами (состав и структура кристалла, сорт и энергия движущихся частиц, температура кристалла, количество дефектов в кристалле). Пятна и линии на ионограмме по своей природе принципиально отличны от пятен и линий, получаемых при изучении кристалла дифракционными методами (см. Рентгеновский структурный анализ, Электронография, Нейтронография). Из-за малой величины длины волны де Бройля для тяжёлых частиц дифракционные явления на образование теней практически не влияют.

Т. э. используется в ядерной физике и физике твёрдого тела. На базе Т. э. разработан метод измерения времени протекания ядерных реакций (См. Ядерные реакции) в диапазоне значений 10-6-10-18 сек. Информация о величине τ извлекается из формы теней в угловых распределениях заряженных продуктов ядерных реакций, поскольку эта форма определяется смещением составного ядра за время его жизни из узла решётки. В физике твёрдого тела Т. э. используется для исследования структуры кристалла, распределения примесных атомов и дефектов. Особенно эффективными методы, основанные на Т. э., оказываются при изучении тонких монокристаллических слоев вещества (10-1000 Å).

Т. э. относится к группе ориентационных явлений, возникающих при взаимодействии частиц с кристаллами. Другое ориентационное явление - Каналирование заряженных частиц.

Лит.: Тулинов А. Ф., Влияние кристаллической решетки на некоторые атомные и ядерные процессы, "Успехи физических наук", 1965, т. 87, в. 4, с. 585; Широков Ю. М., Юдин Н. П., Ядерная физика, М., 1972; Медиков Ю. В., Тулинов А. Ф., Ядерные столкновения и кристаллы, "Природа", 1974, № 10; Карамян С. А., Меликов Ю. В., Тулинов А. Ф., Об использовании эффекта теней для измерения времени протекания ядерных реакций, "Физика элементарных частиц и атомного ядра", 1973, т. 4, в. 2.

А. Ф. Тулинов.

Рис. 3. Ионограмма кристалла.

Рис. 1. Происхождение эффекта теней.

Рис. 2. Угловое распределение интенсивности потока вылетающих из кристалла частиц при эффекте теней.

Нашествие теней         
ЭПИЗОД «ВАВИЛОНА-5»
Нашествие теней (Вавилон-5)
«Нашествие теней» () — ключевой эпизод второго сезона научно-фантастического сериала «Вавилон-5». В 1996 году серия получила премию Хьюго в номинации за лучшую постановку.
ПАРНИКОВЫЙ ЭФФЕКТ         
  • Прозрачность атмосферы Земли в видимом и инфракрасном диапазонах (поглощение и рассеивание):<br>
1. Интенсивность солнечного излучения (слева) и инфракрасного излучения поверхности Земли (справа) — даны спектральные интенсивности без учёта и с учётом поглощения<br>
2. Суммарное поглощение и рассеивание в атмосфере в зависимости от длины волны<br>
3. Спектры поглощения различных парниковых газов и [[рэлеевское рассеяние]].
  • Климатические индикаторы за последние 0,5 млн лет: изменение уровня океана (синий), концентрация <sup>18</sup>O в морской воде, концентрация CO<sub>2</sub> в антарктическом льду. Деление временной шкалы — 20 000 лет. Пики уровня моря, концентрации CO<sub>2</sub> и минимумы <sup>18</sup>O совпадают с межледниковыми температурными максимумами.
ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ НИЖНИХ СЛОЁВ АТМОСФЕРЫ ПЛАНЕТЫ ПО СРАВНЕНИЮ С ЭФФЕКТИВНОЙ ТЕМПЕРАТУРОЙ
Оранжерейный эффект; Тепличный эффект
(оранжерейный эффект) в атмосферах планет , нагрев внутренних слоев атмосферы (Земли, Венеры и других планет с плотными атмосферами), обусловленный прозрачностью атмосферы для основной части излучения Солнца (в оптическом диапазоне) и поглощением атмосферой основной (инфракрасной) части теплового излучения поверхности планеты, нагретой Солнцем. В атмосфере Земли излучение поглощается молекулами Н2О, СО2, О3 и др. Парниковый эффект повышает среднюю температуру планеты, смягчает различия между дневными и ночными температурами. В результате антропогенных воздействий содержание СО2 (и других газов, поглощающих в инфракрасном диапазоне) в атмосфере Земли постепенно возрастает. Не исключено, что усиление парникового эффекта в результате этого процесса может привести к глобальным изменениям климата Земли.
ОРАНЖЕРЕЙНЫЙ ЭФФЕКТ         
  • Прозрачность атмосферы Земли в видимом и инфракрасном диапазонах (поглощение и рассеивание):<br>
1. Интенсивность солнечного излучения (слева) и инфракрасного излучения поверхности Земли (справа) — даны спектральные интенсивности без учёта и с учётом поглощения<br>
2. Суммарное поглощение и рассеивание в атмосфере в зависимости от длины волны<br>
3. Спектры поглощения различных парниковых газов и [[рэлеевское рассеяние]].
  • Климатические индикаторы за последние 0,5 млн лет: изменение уровня океана (синий), концентрация <sup>18</sup>O в морской воде, концентрация CO<sub>2</sub> в антарктическом льду. Деление временной шкалы — 20 000 лет. Пики уровня моря, концентрации CO<sub>2</sub> и минимумы <sup>18</sup>O совпадают с межледниковыми температурными максимумами.
ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ НИЖНИХ СЛОЁВ АТМОСФЕРЫ ПЛАНЕТЫ ПО СРАВНЕНИЮ С ЭФФЕКТИВНОЙ ТЕМПЕРАТУРОЙ
Оранжерейный эффект; Тепличный эффект
то же, что парниковый эффект.
Эффект аудитории         
Эффект Зайонца; Эффект фасилитации
Эффе́кт аудито́рии (эффе́кт За́йонца, эффе́кт фасилита́ции) — влияние постороннего присутствия на поведение человека. Этот эффект необходимо учитывать при проведении, к примеру, психологических исследований: эффект аудитории можно рассматривать как один из факторов, угрожающих внутренней валидности.
Парниковый эффект         
  • Прозрачность атмосферы Земли в видимом и инфракрасном диапазонах (поглощение и рассеивание):<br>
1. Интенсивность солнечного излучения (слева) и инфракрасного излучения поверхности Земли (справа) — даны спектральные интенсивности без учёта и с учётом поглощения<br>
2. Суммарное поглощение и рассеивание в атмосфере в зависимости от длины волны<br>
3. Спектры поглощения различных парниковых газов и [[рэлеевское рассеяние]].
  • Климатические индикаторы за последние 0,5 млн лет: изменение уровня океана (синий), концентрация <sup>18</sup>O в морской воде, концентрация CO<sub>2</sub> в антарктическом льду. Деление временной шкалы — 20 000 лет. Пики уровня моря, концентрации CO<sub>2</sub> и минимумы <sup>18</sup>O совпадают с межледниковыми температурными максимумами.
ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ НИЖНИХ СЛОЁВ АТМОСФЕРЫ ПЛАНЕТЫ ПО СРАВНЕНИЮ С ЭФФЕКТИВНОЙ ТЕМПЕРАТУРОЙ
Оранжерейный эффект; Тепличный эффект
Парнико́выйЕлисеев А. В., Мохов И. И. ПАРНИКОВЫЙ ЭФФЕКТ // Большая российская энциклопедия. Том 25. Москва, 2014, стр. 368 или оранжерейный или тепличный эффе́кт
ШОТТКИ ЭФФЕКТ         
Шотки эффект; Эффект Шотки; Шоттки эффект
рост тока электронной эмиссии с поверхности твердого тела под действием электрического поля, ускоряющего электроны (уменьшающего работы выхода). Назван по имени немецкого физика В. Шоттки.
Шотки эффект         
Шотки эффект; Эффект Шотки; Шоттки эффект

уменьшение работы выхода (См. Работа выхода) электронов из твёрдых тел под действием внешнего ускоряющего их электрического поля. Ш. э. проявляется в росте тока насыщения термоэлектронной эмиссии (См. Термоэлектронная эмиссия), в уменьшении энергии поверхностной ионизации (см. Ионная эмиссия) и в сдвиге порога фотоэлектронной эмиссии (См. Фотоэлектронная эмиссия) в сторону бо́льших длин волн λ Ш. э. возникает в полях Е, достаточных для рассасывания пространств. заряда у поверхности эмиттера (Е Шотки эффект 10 -100 всм―1), и существен до полей Е Шотки эффект 106 в. см―1. При Е > 107 всм―1 начинает преобладать просачивание электронов сквозь потенциальный барьер на границе тела (Туннельная эмиссия).

Классическая теория Ш. э. для металлов создана немецким учёным В. Шотки (1914). Из-за большой электропроводности металла силовые линии электрического поля перпендикулярны его поверхности. Поэтому электрон с зарядом -е, находящийся на расстоянии х > а (а - межатомное расстояние) от поверхности, взаимодействует с ней так, как если бы он индуцировал в металле на глубине х своё "электрическое изображение", т. е. заряд +е. Сила их притяжения:

(1)

o - Диэлектрическая проницаемость вакуума), потенциал этой силы (φ э. и. = -е/16πεох. Внешнее электрическое поле уменьшает φ э. и. на величину Е. х (см. рис.); на границе металл - вакуум появляется потенциальный барьер с вершиной при х = хм =. При E ≤ 5.106в. см―1 xm ≥ 8Å. Уменьшение работы выхода Φ за счёт действия поля равно: , например при Е = 105в. см―1 ΔΦ = 0,12 эв и хм=60 Å. В результате Ш. э. j экспоненциально возрастает от jo до , где к - Больцмана постоянная, а частотный порог фотоэмиссии сдвигается на величину:

. (2)

В случае, когда эмиттирующая поверхность неоднородна и на ней имеются "пятна" с различной работой выхода, над её поверхностью возникает электрическое поле "пятен". Это поле тормозит электроны, вылетающие из участков катода с меньшей, чем у соседних, работой выхода. Внешнее электрическое поле складывается с полем пятен и, возрастая, устраняет тормозящее действие последнего. Вследствие этого эмиссионный ток из неоднородного эмиттера растет при увеличении E быстрее, чем в случае однородного эмиттера (аномальный Ш. э.).

Влияние электрического поля на эмиссию электронов из полупроводников (См. Полупроводники) белее сложно. Электрическое поле проникает в них на бо́льшую глубину (от сотен до десятков тысяч атомных слоев). Поэтому заряд, индуцированный эмиттированным электроном, расположен не на поверхности, а в слое толщиной порядка радиуса экранирования rэ. Для х > rэ справедлива формула (1), но для полей Е во много раз меньших, чем у металлов (ЕШотки эффект102-104 в/см). Кроме того, внешнее электрическое поле, проникая в полупроводник, вызывает в нём перераспределение зарядов, что приводит к дополнительному уменьшению работы выхода. Обычно, однако, на поверхности полупроводников имеются поверхностные электронные состояния. При достаточной их плотности (Шотки эффект1013 см―2) находящиеся в них электроны экранируют внешнее поле. В этом случае (если заполнение и опустошение поверхностных состояний под действием поля вылетающего электрона происходит достаточно быстро) Ш. э. такой же, как и в металлах. Ш. э. имеет место и при протекании тока через контакт металл - полупроводник (см. Шотки барьер, Шотки диод).

Лит.: Schottky W., "Physikalische Zeitschrift", 1914, Bd 15, S. 872; Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Ненакаливаемые катоды, М., 1974.

Т. М. Лифшиц.

Ф э.и. - потенциальная энергия электрона в поле силы электрического изображения; еЕх - потенциальная энергия электрона во внешнем электрическом поле; Ф - потенциальная энергия электрона вблизи поверхности металла а присутствии внешнего электрического поля: Фм - работа выхода металла; ∆Ф - уменьшение работы выхода под действием внешнего электрического поля; ЕF - уровень Ферми в металле; хм - расстояние от вершины потенциального барьера до поверхности металла; штриховкой показаны заполненные электронные состояния в металле.

Эффект Шоттки         
Шотки эффект; Эффект Шотки; Шоттки эффект
Эмиссии электронов из металла препятствует потенциальный барьер. Снижение этого барьера по мере увеличения прилагаемого внешнего электрического поля называется эффектом Шоттки (был предсказан Вальтером Шоттки в 1938 году).

Википедия

Тенёй

Тенёй (фр. Theneuille) — коммуна во Франции, находится в регионе Овернь. Департамент коммуны — Алье. Входит в состав кантона Серийи. Округ коммуны — Монлюсон.

Код INSEE коммуны — 03282.

Что такое ТЕНЕЙ ЭФФЕКТ - определение