Тепловой реактор - определение. Что такое Тепловой реактор
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Тепловой реактор - определение

Реакторы на тепловых нейтронах; Тепловой реактор
Найдено результатов: 104
Реактор на тепловых нейтронах         
Реа́ктор на тепловы́х нейтро́нах — ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны тепловой части спектра энергии — «теплового спектра». Использование нейтронов теплового спектра выгодно потому, что сечение взаимодействия ядер 235U с нейтронами, участвующими в цепной реакции, растёт по мере снижения энергии нейтронов, а ядер 238U остаётся при низких энергиях постоянным.
ТЕПЛОВОЙ РЕАКТОР         
ядерный реактор, в котором подавляющее число делений ядер делящегося вещества происходит при взаимодействии их с тепловыми нейтронами. Ядерным топливом в тепловом реакторе служит 233U, 235U, 239Pu, 241Pu. Тепловой реактор используют для производства электроэнергии, опреснения воды, искусственного получения радиоактивных веществ, при технических испытаниях материалов и конструкций и т. д.
Тепловой реактор         

Ядерный реактор, в котором подавляющее число делений ядер делящегося вещества происходит при взаимодействии их с тепловыми нейтронами (См. Тепловые нейтроны).

Для замедления Нейтронов до тепловых энергий (средняя энергия нейтронов деления составляет около 2 Мэв) в активной зоне (См. Активная зона) реактора размещают замедлитель - вещество, содержащее лёгкие ядра и слабо поглощающее нейтроны. В качестве замедлителей могут быть использованы водород (протий и дейтерий), бериллий, углерод или их соединения - обычная тяжёлая вода, углеводороды, окись бериллия. Чаще всего замедлителем в Т. р. служит вода или графит.

В качестве ядерного топлива в Т. р. используют делящиеся изотопы урана и плутония (233U, 235U, 239Pu, 241Pu), которые обладают большими сечениями захвата нейтронов малых энергий. Это даёт возможность создания Т. р. с относительно малой критической массой (См. Критическая масса) и, следовательно, относительно малым количеством загружаемого делящегося вещества. Основной вид ядерного топлива, используемого в Т. р., - природный уран или уран, несколько обогащенный изотопом 235U. В процессе деления 235U освобождается Тепловой реактор2,5 нейтрона на ядро; при этом в среднем 1 нейтрон расходуется на поддержание ядерной реакции (См. Ядерные реакции), а часть оставшихся (до 0,9 нейтрона) взаимодействует с содержащимся в топливе 238U (называемым иногда сырьевым материалом), образуя вторичное ядерное топливо - 239Pu. Доля нейтронов, взаимодействующих с сырьевым материалом, определяется выбором замедлителя и количеством самого сырьевого материала в активной зоне. В Т. р. с уран-ториевым циклом (ядерное топливо - 233U, сырьевой материал - 232Th, см. Ториевый реактор) число таких нейтронов может превосходить число разделившихся ядер в 1,05-1,1 раза, что даёт возможность осуществлять расширенное воспроизводство ядерного топлива.

Регулирование работы Т. р. (при необходимости ослабить или усилить интенсивность процесса деления) обычно осуществляется регулирующим стержнем (См. Регулирующий стержень) реактора (в активную зону вводят или из неё выводят вещества, интенсивно поглощающие нейтроны). Хорошие поглотители - кадмий, бор, редкоземельные элементы. Чаще всего используют соединения бора (например, карбид бора) или бористую сталь; в водо-водяных реакторах (См. Водо-водяной реактор) частичное регулирование производят изменением концентрации борсодержащих веществ (например, борной кислоты) в теплоносителе (См. Теплоноситель) (воде). Характеризуют рабочее состояние Т. р. так называемым эффективным коэффициентом размножения Кэ - отношением числа поглощённых в реакторе нейтронов одного поколения к числу поглощённых нейтронов предыдущего поколения. При Кэ = 1 реактор находится в критическом стационарном состоянии, при Кэ> 1 мощность реактора растет, при Кэ<1 - падает.

В качестве теплоносителя, отводящего из реактора тепло, которое выделяется в процессе деления, используют жидкости и газы, слабо поглощающие нейтроны и способные осуществлять эффективный теплообмен (обычную и тяжёлую воду, органические жидкости, двуокись углерода, гелий). В отдельных случаях применяют жидкие металлы и соли. Вода и органические жидкости обычно выполняют в Т. р. функции замедлителя и теплоносителя одновременно.

В качестве конструкционных материалов активной зоны Т. р. используют Al (при t = 200-250 °С), Zr (250 < t < 400 °C) и сталь (t > 400 °С). Al и Zr сравнительно мало влияют на интенсивность поглощения нейтронов в реакторе; сталь же обладает большим сечением поглощения нейтронов, поэтому в соответствующих Т. р. необходимо использовать обогащенное топливо.

В современной (середина 70-х гг.) ядерной технике (См. Ядерная техника) Т. р. являются основным видом реакторов и находят самое разнообразное применение. Т. р. используют для производства электроэнергии, опреснения воды, получения искусственных делящихся веществ и радиоактивных изотопов, при технических испытаниях материалов и конструкций, изучении физических процессов и явлений и т. д.

Лит. см. при ст. Ядерный реактор.

С. А. Скворцов.

Реактор электрический         
  • кВ]], номинальная [[реактивная мощность]] 50 Мвар
  • Условное обозначение одинарного и сдвоенного реакторов

высоковольтный электрический аппарат, предназначенный для ограничения тока короткого замыкания (См. Короткое замыкание) (КЗ) и поддержания достаточного напряжения на шинах распределительного устройства (См. Распределительное устройство) при КЗ в сети. Представляет собой катушку индуктивности, на которой происходит основное падение напряжения при КЗ. Р. э. используют также для ограничения пусковых токов синхронных электродвигателей и в качестве потребителя реактивной мощности (См. Реактивная мощность) для повышения пропускной способности линий электропередачи. Р. э. на напряжения до 35 кв (для установки в закрытых помещениях) выполняются в виде катушек, витки которых закреплены в бетонных колоннах, а на 35 кв и выше - в виде катушек, помещенных в стальные баки, заполненные трансформаторным маслом.

Основные технические параметры Р. э. - номинальные напряжение и ток и относительное индуктивное сопротивление (процентное отношение падения напряжения на Р. э. при номинальном токе к номинальному фазному напряжению сети). Для уменьшения потерь напряжения в Р. э. при протекании через него тока нагрузки применяют сдвоенные Р. э., состоящие из двух катушек с противоположным направлением намотки, причём каждая катушка включается в свою линию. При одинаковой нагрузке обеих линий магнитные потоки катушек практически компенсируют друг друга, индуктивное сопротивление и потери напряжения малы. При КЗ в одной из линий результирующий магнитный поток в Р. э. резко возрастает, т.к. магнитный поток, создаваемый катушкой с номинальным током, значительно меньше, чем магнитный поток катушки с током КЗ; индуктивное сопротивление растет, и величина тока КЗ ограничивается.

Лит.: Стернин В. Г., Карпенский А. К., Сухие токоограничивающие реакторы, М. - Л., 1965; Чунихин А. А., Электрические аппараты, М., 1967.

А. М. Бронштейн.

РЕАКТОР ЭЛЕКТРИЧЕСКИЙ         
  • кВ]], номинальная [[реактивная мощность]] 50 Мвар
  • Условное обозначение одинарного и сдвоенного реакторов
высоковольтный электрический аппарат (в виде катушки индуктивности) для ограничения тока короткого замыкания (КЗ) и поддержания достаточного напряжения на шинах распределительного устройства при кратковременном коротком замыкании в сети.
Токоограничивающий реактор         
  • кВ]], номинальная [[реактивная мощность]] 50 Мвар
  • Условное обозначение одинарного и сдвоенного реакторов
Токоограни́чивающий реа́ктор — электрический аппарат, предназначенный для ограничения ударного тока короткого замыкания. Включается последовательно в цепь тока, который нужно ограничивать, и работает как индуктивное (реактивное) дополнительное сопротивление, уменьшающее ток и поддерживающее напряжение в сети при коротком замыкании, что увеличивает устойчивость генераторов и системы в целом.
ГРАФИТО-ВОДНЫЙ РЕАКТОР         
ядерный реактор на тепловых нейтронах, в котором замедлителем служит графит, а теплоносителем - вода. Характеризуется малой энергонапряженностью единицы объема активной зоны. Мощность до нескольких ГВт. Графито-водными реакторами оборудованы первая в мире Обнинская АЭС, 1-й и 2-й энергоблоки Белоярской АЭС (Российская Федерация) и др.
Графито-водный реактор         

уран-графитовый реактор, Ядерный реактор на тепловых нейтронах, в котором замедлителем служит графит, а теплоносителем - обычная вода; относится к классу канальных реакторов (См. Канальный реактор). Активная зона Г.-в. р. состоит из графитовых блоков, пронизанных металлическими каналами, по которым протекает теплоноситель. В каналах или на их внешних стенках размещаются тепловыделяющие элементы (См. Тепловыделяющий элемент). Активная зона окружается герметическим кожухом. Отсутствие тяжёлого громоздкого корпуса, несущего давление, - г. особенность Г.-в. р. За счёт увеличения числа каналов можно создать реактор большой мощности (до 5 Гвт). В ректорах такого типа смена тепловыделяющих элементов может производиться с помощью специального приспособления с дистанционным управлением без остановки реактора и без снижения его мощности (перегрузка "на ходу"). Высокая теплопроводность воды (теплоносителя), хорошие ядерно-физические свойства графита (замедлителя), а также специфические особенности конструкции обеспечивают высокие технико-экономические показатели атомной электростанции (АЭС) с г.-в. р. Как всякий реактор с графитовым замедлителем, Г.-в. р. обладает малой энергонапряжённостью единицы объёма активной зоны.

Наиболее широко Г.-в. р. применяют в СССР. К ним относятся реактор АЭСАН СССР (первая в мире), реакторы первого и второго блоков Белоярской АЭС, реактор Сибирской АЭС и др.

Лит. см. при ст. Ядерный реактор.

Ю. И. Корякин.

Графито-водный ядерный реактор         
Графи́то-во́дный я́дерный реактор (ГВР, водно-графитовый реактор (ВГР), уран-графитовый реактор; по классификации МАГАТЭ — LWGR, ) — гетерогенный ядерный реактор, использующий в качестве замедлителя графит, а в качестве теплоносителя — обычную (лёгкую) воду.
ГЕТЕРОГЕННЫЙ РЕАКТОР         
ядерный реактор, в котором ядерное топливо используется в виде блоков, расположенных среди замедлителя и составляющих правильную решетку. Практически все современные ядерные реакторы - гетерогенные.

Википедия

Реактор на тепловых нейтронах

Реа́ктор на тепловы́х нейтро́нах — ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны тепловой части спектра энергии — «теплового спектра». Использование нейтронов теплового спектра выгодно потому, что сечение взаимодействия ядер 235U с нейтронами, участвующими в цепной реакции, растёт по мере снижения энергии нейтронов, а сечение поглощения нейтронов ядрами 238U остаётся при низких энергиях постоянным. В результате, самоподдерживающаяся реакция при использовании природного урана, в котором делящегося изотопа 235U всего 0,7 %, невозможна на быстрых нейтронах (спектра деления) и возможна на медленных (тепловых).

Активная зона реактора на тепловых нейтронах состоит из замедлителя, ядерного топлива, теплоносителя и конструкционных материалов. В качестве топлива могут использоваться изотопы урана 235U и 233U, а также изотоп плутония 239Pu. Ядерные реакторы на тепловых или быстрых нейтронах описываются в первом приближении одними и теми же основными законами динамики. В этом приближении наиболее важное различие между реакторами на быстрых и тепловых нейтронах заключается в скорости размножения нейтронов. Время жизни поколения нейтронов (среднее время, необходимое для воспроизводства нейтронов в реакторе) в таком реакторе составляет порядка 10−3 с, так как нейтроны, прежде чем вызвать деление, сильно замедляются, затем диффундируют при тепловых энергиях. Для уменьшения загрузки ядерного топлива в реакторах на тепловых нейтронах применяют конструкционные материалы с малым сечением радиационного захвата нейтронов. К ним относятся алюминий, магний, цирконий и др. Небольшие потери нейтронов в замедлителе и конструкционных материалах дают возможность использовать в качестве ядерного топлива для реакторов на тепловых нейтронах природный и слабообогащённый уран.

Для конструкций мощных энергетических реакторов не всегда удаётся подобрать подходящие материалы с небольшим сечением поглощения. Часто оболочки, каналы и другие части конструкции реакторов изготовляют из таких интенсивно поглощающих нейтроны материалов, как нержавеющая сталь, а дополнительные потери тепловых нейтронов в конструкционных материалах компенсируются использованием урана с высоким обогащением — до более 10 %.

В реакторах на тепловых нейтронах весьма существенно поглощение нейтронов продуктами деления, для компенсации которого в активную зону перед началом кампании добавляют определённую массу ядерного топлива. Эта добавка увеличивается с ростом кампании и удельной мощности реактора.

Тепловые реакторы разделяют на гомогенные и гетерогенные.

Что такое Реактор на тепловых нейтронах - определение