Типов теория - определение. Что такое Типов теория
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Типов теория - определение

Типов теория

Типов теория         
I Ти́пов тео́рия

в химии, одна из ведущих химических теорий середины 19 в. В 1839- 1840 Ж. Б. Дюма предложил рассматривать химические соединения как продукты замещения одних элементов или радикалов (см. Радикалов теория) другими в немногих "типичных" соединениях ("старая Т. т. "). В 1853 Ш. Жерар разработал "новую Т. т." и использовал её для классификации органических соединений. Согласно Жерару, более сложные органические соединения могут быть произведены от следующих основных четырёх типов веществ:

Заменяя в этих формулах атомы Н др.: атомами или радикалами (по Жерару, "остатками"), можно было получить формулы органических соединений всех известных в середине 19 в. классов. Например, к типу водорода относили углеводороды, металлоорганические соединения, альдегиды, кетоны, к типу воды - спирты, кислоты, эфиры, к типу хлористого водорода - моногалоген опроизводные углеводородов, к типу аммиака - амины, амиды, имиды, арсины, фосфины. С 1857 по предложению Ф. А. Кекуле углеводороды стали относить к типу метана.

Т. т. способствовала развитию органической химии, в частности классификации органических соединений. Но её основная мысль - уложить соединения углерода в формулы простейших неорганических соединений - была ошибочной. Вскоре обнаружилась необходимость введения кратных (удвоенных, утроенных и т. д.) и смешанных (составленных из двух и более простых) типов, а также возможность относить соединения одного класса к разным типам (например, альдегиды - к типам водорода и воды). Кроме того, формулы Т. т. выражали не истинное строение соединений, а только сходство некоторых их реакций с реакциями более простых и известных веществ. Поэтому в 1860-х гг. Т. т. стала уступать место классической химического строения теории (См. Химического строения теория), созданной А. М. Бутлеровым.

Лит.: Быков Г. В., История классической теории химического строения, М., 1960, с. 17-23.

С. Л. Погодин.

II Ти́пов тео́рия

в логике, система расширенного исчисления предикатов (См. Исчисление предикатов) или аксиоматической теории множеств (См. Аксиоматическая теория множеств), включающая переменные различных "типов" (сортов, ступеней, порядков). Формальные объекты этой теории, согласно системе Рассела - Уайтхеда, разделяются на типы: предметы (индивиды), предикаты, предикаты от предикатов и т. д. [объекты n-го типа - это предикаты от объектов (n-1)-го и, быть может, меньших типов]. При "двойственной" формулировке Т. т. как аксиоматической теории множеств объекты n-го типа суть множества объектов (n-1)-го (и, быть может, меньших) типа. Соответственно, принцип свёртывания (Абстракции принцип), неограниченное пользование которым в расширенном исчислении предикатов и в теории множеств приводит к Парадоксам, звучит теперь несколько по-другому: "для всякой предикатной формулы со свободной переменной х, не содержащей объектов выше (n-1)-го типа, существует предикат n-го типа, истинный для тех и только тех значений х, для которых истинна данная формула", или "для любого свойства, в формулировке которого используются множества не выше (n-1)-го типа, существует множество n-го типа, состоящее из тех и только тех предметов, которые обладают этим свойством". В обеих формулировках выделены слова, добавление которых отличает теоретико-типовую форму аксиомы свёртывания от обычной и которые препятствуют возникновению в Т. т. парадоксов, возникающих в "наивной" теории множеств, в том числе парадокса Рассела о "множестве всех множеств, не содержащих себя в качестве элемента".

Однако математика, построенная на базе Т. т., оказывается, как показывает внимательный анализ, существенно более бедной, чем обычная классическая математика. Поэтому Рассел ввёл в свою систему так называемую аксиому сводимости, постулирующую, грубо говоря, для каждого множества (предиката) n-го типа существование эквивалентного ему множества 1-го типа. Но уже для этой аксиомы ни на какое "чисто логическое" обоснование математики, как показал сам Рассел, рассчитывать не приходилось (в силу чего программа Логицизма выведения всей математики из "чистой" логики оказывалась невыполнимой).

Лит.: Гильберт Д., Аккерман В., Основы теоретической логики, пер. с нем., М., 1947, гл. 4 и прилож. 1; Ван Хао, Мак -Нотон P., Аксиоматические системы теории множеств, пер. с франц., М., 1963, гл. 1-2, 5-6; Френкель А., Бар-Хиллел И., Основания теории множеств, пер. с англ., М., 1966, гл. 1, 3 (лит.); Andrews Р. В., A transfinite type theory with type variables, Amst., 1965.

Теория типов         
Теорией типов считается какая-либо формальная система, являющаяся альтернативой наивной теории множеств, сопровождаемая классификацией элементов такой системы с помощью типов, образующих некоторую иерархию. Также под теорией типов понимают изучение подобных формализмов.
Теория катастроф         
  • thumb
  • Поверхность катастрофы «Ласточкин хвост»
Теория катастроф — раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Теория катастроф — раздел современной математики, который является дальнейшим развитием теории устойчивости и бифуркаций.

Википедия

Теория типов

Теорией типов считается какая-либо формальная система, являющаяся альтернативой наивной теории множеств, сопровождаемая классификацией элементов такой системы с помощью типов, образующих некоторую иерархию. Также под теорией типов понимают изучение подобных формализмов.

Теория типов — математически формализованная база для проектирования, анализа и изучения систем типов данных в теории языков программирования (раздел информатики). Многие программисты используют это понятие для обозначения любого аналитического труда, изучающего системы типов в языках программирования. В научных кругах под теорией типов чаще всего понимают более узкий раздел дискретной математики, в частности λ-исчисление с типами.

Современная теория типов была частично разработана в процессе разрешения парадокса Рассела и во многом базируется на работе Бертрана Рассела и Альфреда Уайтхеда «Principia mathematica».