совокупность реакций окисления, протекающих во всех живых клетках. Основная функция О. б. - обеспечение организма энергией в доступной для использования форме. Реакции О. б. в клетках катализируют ферменты, объединяемые в класс оксидоредуктаз (См.
Оксидоредуктазы). Изучение окисления в организме было начато в 18 в. А.
Лавуазье; в дальнейшем значительный вклад в исследование О. б. (его локализация в живых клетках, связь с др. процессами обмена веществ, механизмы ферментативных окислительно-восстановительных реакций, аккумуляция и превращение энергии и др.) внесли О.
Варбург, Г.
Виланд (Германия), Д.
Кейлин, Х.
Кребс, П. Митчелл (Великобритания), Д.
Грин, А.
Ленинджер, Б. Чанс, Э. Рэкер (США), а в СССР - А. Н.
Бах,
В. И.
Палладин,
В. А.
Энгельгардт, С. Е.
Северин,
В. А.
Белицер, В. П. Скулачев и др.
О. б. в клетках связано с передачей т. н. восстанавливающих эквивалентов (ВЭ) - атомов водорода или электронов - от одного соединения - донора, к другому - акцептору. У аэробов (См.
Аэробы)
- большинства животных, растений и многих микроорганизмов - конечным акцептором ВЭ служит кислород. Поставщиками ВЭ могут быть как органические, так и неорганические вещества (см. таблицу).
Классификация организмов по источнику энергии и восстанавливающих эквивалентов
----------------------------------------------------------------------------------------------------------------------------------------------------------------------
| Тип организмов | Источник | Окисляемое соединение | Примеры |
| | энергии | (поставщик | |
| | | восстанавливающих | |
| | | эквивалентов) | |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Фотолитотрофы | Свет | Неорганические соединения | Зелёные клетки высших растений, |
| Фотоорганотрофы | Свет | (Н2О, H2S, S) | синезелёные водоросли, |
| Хемолитотрофы | Реакции | Органические соединения | фотосинтезирующие бактерии |
| Хемоорганотрофы | окисления | Неорганические соединения | Несерные пурпурные бактерии |
| | Реакции | (H2, S, H2S, NH3, Fe2+) | Водородные, серные, |
| | окисления | Органические соединения | денитрифицирующие бактерии, |
| | | | железобактерии |
| | | | Животные, большинство |
| | | | микроорганизмов, |
| | | | нефотосинтезирующие клетки |
| | | | растений |
----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Основной путь использования энергии, освобождающейся при О. б., - накопление её в молекулах аденозинтрифосфорной кислоты (АТФ) и др. макроэргических соединений (См.
Макроэргические соединения).
О. б., сопровождающееся синтезом АТФ из аденозиндифосфорной кислоты (АДФ) и неорганического фосфата, происходит при
Гликолизе, окислении α-кетоглутаровой кислоты и при переносе ВЭ в цепи окислительных (дыхательных) ферментов, обычно называют окислительным фосфорилированием (См.
Окислительное фосфорилирование) (см.
схему).
В процессе дыхания углеводы, жиры и белки подвергаются многоступенчатому окислению, которое приводит к восстановлению основных поставщиков ВЭ для дыхательных флавинов,
Никотинамидадениндинуклеотида (НАД),
Никотинамидадениндинуклеотидфосфата (НАДФ) и липоевой кислоты (См.
Липоевая кислота). Восстановление этих соединений в значительной мере осуществляется в
Трикарбоновых кислот цикле, которым завершаются основные пути окислительного расщепления углеводов (оно начинается с гликолиза), жиров и аминокислот. Помимо цикла трикарбоновых кислот, некоторое количество восстановленных коферментов (См.
Коферменты)
- ФАД (
Флавинадениндинуклеотида) и НАД - образуется при окислении жирных кислот, а также при окислительном дезаминировании глутаминовой кислоты (НАД) и в пентозофосфатном цикле (См.
Пентозофосфатный цикл) (восстановленный НАДФ).
Соотношение и локализация различных механизмов О. б. В расчёте на 1 молекулу глюкозы гликолиз даёт 2 молекулы АТФ, а фосфорилирование в дыхательной цепи - 34 молекулы АТФ. Гликолиз, цикл трикарбоновых кислот и дыхательная цепь функционируют, по-видимому, в клетках всех эукариотов (См.
Эукариоты). Окисление жирных кислот у позвоночных поставляет половину энергии, потребляемой печенью, почками, мышцей сердца и покоящимися скелетными мышцами; в клетках мозга оно практически не происходит. Окисление по пентозофосфатному пути активно в печени и лактирующих молочных железах, но незначительно в сердечной и скелетных мышцах.
В жидкой фазе цитоплазмы растворены все ферменты гликолиза. Внутренние мембраны митохондрий (См.
Митохондрии), мембраны хлоропластов (См.
Хлоропласты) (тилакоидов) и клеточные мембраны бактерий содержат фосфорилирующие цепи переноса электронов. В матриксе митохондрий локализовано окисление жирных кислот, ферменты цикла трикарбоновых кислот и глутаматдегидрогеназа. Во внутренней мембране митохондрий находятся ферменты, окисляющие янтарную и β-оксимасляную кислоты, во внешней - ферменты, участвующие в обмене аминокислот:
Моноаминоксидаза и кинуренингидроксилаза. В особых органоидах клетки, т. н. пероксисомах, или микротельцах, вклад которых в суммарное поглощение О
2 может достигать в печени 20\%, находится флавиновая оксидаза, окисляющая аминокислоты, гликолевую кислоту и др. субстраты с образованием перекиси водорода, которая затем разлагается каталазой (См.
Каталаза) или используется пероксидазами (См.
Пероксидазы) в реакциях окисления. В мембранах эндоплазматической сети клетки локализованы гидроксилазы и оксигеназы, организованные в короткие нефосфорилирующие цепи переноса электронов.
Окислительные реакции не всегда сопровождаются накоплением энергии; в ряде случаев они несут функции превращения веществ (например, окисление при образовании жёлчных кислот, стероидных гормонов, на путях превращения аминокислот и др.). При окислении происходит обезвреживание чужеродных и ядовитых для организма веществ (ароматических соединений, недоокисленных продуктов дыхания и др.). О. б., не сопряжённое с накоплением энергии, называется свободным окислением. Его энергетический эффект - образование тепла. По-видимому, система переноса электронов, осуществляющая окислительное фосфорилирование, способна переключаться на свободное окисление при увеличении потребности организма в тепле (у гомойотермных животных (См.
Гомойотермные животные)).
Механизм использования энергии окисления. Долгое время оставался неясным вопрос о механизме преобразования энергии, освобождающейся при переносе ВЭ по цепи окислительных ферментов. Согласно т. н. хемиосмотической теории, развитой в 60-х гг. 20 в. (английский биохимик П. Митчелл и др.), энергия сначала используется для создания электрического поля ("+" с одной стороны мембраны и "-" с другой) и разности концентраций ионов Н+ по разные стороны мембраны. Оба фактора (электрическое поле и разность концентраций) могут служить движущей силой для действия фермента АТФ-синтетазы, осуществляющей синтез АТФ. Часть энергии поля может быть прямо использована клеткой для переноса ионов через мембрану, восстановление переносчиков электронов, образования тепла без промежуточного участия АТФ.
Эволюция энергообеспечения в живой природе. Древнейшие организмы, как полагают, существовали в первичной бескислородной атмосфере Земли и были анаэробами (См.
Анаэробы) и гетеротрофными организмами (См.
Гетеротрофные организмы).
Обеспечение клеток энергией шло за счёт процессов типа гликолиза. Возможно, существовал механизм окисления, известный у некоторых современных микроорганизмов: ВЭ передаются через дыхательную цепь на нитрат (NO
-3) или на сульфат (SO
- -4). Принципиально важным этапом оказалось возникновение у древних одноклеточных организмов механизма фотосинтеза, с которым связывают появление кислорода в атмосфере Земли. В результате стало возможным использование O
2, обладающего высоким окислительно-восстановительным потенциалом, в качестве конечного акцептора электронов в дыхательной цепи. Реализация этой возможности произошла при появлении специального фермента - цитохромоксидазы (См.
Цитохромоксидаза), восстанавливающей О
2, и привела к возникновению биохимического дыхательного аппарата современного типа. Обеспечение энергией у всех аэробов (их клетки содержат митохондрии) основано на таком дыхании. Вместе с тем клетки сохранили ферментный аппарат гликолиза. Образуемая в ходе последнего пировиноградная кислота окисляется далее в цикле трикарбоновых кислот, который, в свою очередь, питает дыхательную цепь электронами. Т. о., эволюция энергетического обмена шла, по-видимому, по пути использования и надстройки уже имевшихся ранее механизмов энергообеспечения. Наличие в клетках ныне существующих организмов биохимических систем гликолиза (в цитоплазме), дыхания (в митохондриях), фотосинтеза (в хлоропластах), а также поразительное сходство механизмов превращения энергии в этих органеллах и в микроорганизмах нередко рассматривают как свидетельство возможного происхождения хлоропластов и митохондрий от древних микроорганизмов-симбионтов. См. также
Аденозинфосфорные кислоты,
Биоэнергетика,
Брожение,
Дыхание,
Митохондрии,
Фотосинтез и лит. при этих статьях.
Лит.: Ленингер А., Превращение энергии в клетке, в кн.: Живая клетка, пер. с англ., М., 1962; Скулачев В. П., Аккумуляция энергии в клетке, М., 1969; его же, Трансформация энергии в биомембранах, М., 1972; Малер Г. и Кордес Ю., Основы биологической химии, пер. с англ., М., 1970, гл. 15; Леви А., Сикевиц Ф., Структура и функции клетки, пер. с англ., М., 1971, гл. 12; Ясайтис А. А., Превращение энергии в митохондриях, М., 1973; Ленинджер А., Биохимия, пер. с англ., М., 1974.
С. А. Остроумов.
Пути образования АТФ при хемоорганотрофном типе энергетического обмена. ФГА - 3-фосфоглицериновый альдегид; ФГК - 3-фосфоглицериновая кислота; ФЕП - фосфоенолпировиноградная кислота; ПК - пировиноградная кислота; Ацетил-КоА - ацетил-кофермент А. Количественные соотношения отдельных путей биологического окисления показаны одинарными и двойными стрелками.