ФИЗИКА: СОВРЕМЕННАЯ ФИЗИКА - определение. Что такое ФИЗИКА: СОВРЕМЕННАЯ ФИЗИКА
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ФИЗИКА: СОВРЕМЕННАЯ ФИЗИКА - определение

ЗАВИСИМОСТЬ ФИЗИЧЕСКИХ СВОЙСТВ ОТ НАПРАВЛЕНИЯ ВНУТРИ СРЕДЫ
Анизотропность; Анизотропный; Анизотпропия (физика); Анизотропия (физика)
Найдено результатов: 419
ФИЗИКА: СОВРЕМЕННАЯ ФИЗИКА      
К статье ФИЗИКА
До 1940-х годов основные виды известной тогда материи выглядели довольно просто: атом состоял из электронов, движущихся вокруг массивного ядра; при некоторых условиях он испускал свет в форме квантов, называвшихся фотонами; ядра состояли из нейтронов и протонов (нуклонов), каждый из которых обладал массой, примерно в 1840 раз превышающей массу электрона; частица третьего типа с массой, промежуточной между массой электрона и протона, названная "мезоном", отвечала за взаимодействие частиц ядра (нуклонов), а фотон, квант электромагнитного поля, удерживал вместе электрон и ядро. В то время было естественно рассматривать все перечисленные выше частицы как элементарные формы материи, аналогичные элементам традиционной химии, из которых состоит все, что нас окружает. Однако с открытием в последнее время большого числа новых частиц зародилось сомнение в том, что все они действительно элементарны. Основные работы в этой очень трудной области физики ведутся в научно-исследовательских центрах, располагающих чрезвычайно дорогостоящими экспериментальными установками. В Соединенных Штатах это Брукхейвенская и Аргоннская национальные лаборатории, Национальная лаборатория ускорителей близ Чикаго, Станфордский линейный ускоритель, в Западной Европе - ЦЕРН, Европейский совет по ядерным исследованиям (European Council for Nuclear Research) в Женеве, объединяющий 12 стран. Несколько научно-исследовательских центров, возникших при больших ускорителях, имеется в России.
Главная задача фундаментального изучения материи состоит в том, чтобы как можно больше узнать о всех возможных ее формах, т.е. установить, какие бывают элементарные частицы и каковы их свойства, объяснить, почему наша Вселенная содержит именно эти, а не другие разновидности частиц. В 1970-х годах возникла теория, в которой элементарные частицы считались состоящими из еще более фундаментальных "кирпичиков" материи - кварков. Сначала кварков было всего три, затем их стало 12, а чуть позже - 15. Как это часто бывало в прошлом с другими теориями материи, с каждым таким расширением списка частиц усиливалось подозрение, что теория кварков при всей ее привлекательности все же не является подлинно фундаментальной.
Второе общее направление, которому следует в своем развитии фундаментальная физика сегодня, - это изучение форм материи, состоящих из большого числа связанных частиц. Одно из направлений такого рода исследований занимается изучением газов, частицы которых слабо связаны и основное время проводят в свободном полете. Если не считать поведения газов при экстремальных условиях (такого рода вопросы интересуют тех, кто, например, занимается изучением ракетных двигателей), в этой области знаний сейчас нет ни одного принципиального вопроса, на который нельзя было бы дать ответ.
Что касается жидкостей и твердых тел, то здесь предстоит выяснить еще многое. В частности, твердые тела обладают разнообразными механическими, электрическими и магнитными свойствами, для объяснения которых недостаточно знать, из каких частиц эти тела состоят, поскольку упомянутые свойства зависят также от их агрегатного состояния. Физика твердого тела - быстро развивающаяся область науки, и отчасти это связано с ее большим прикладным значением: так, транзисторы и другие полупроводниковые устройства, созданные как результат исследований и разработок в области физики твердого тела, произвели настоящую революцию в электронике. См. также ИНТЕГРАЛЬНАЯ СХЕМА; ТРАНЗИСТОР.
Еще одно состояние агрегации мы находим в атомном ядре. Поскольку ядро очень мало и его составляющие прочно связаны ядерными силами, оно представляет собой очень трудный объект для изучения, так что сведения о его структуре и типах внутриядерного движения весьма скудны. Исследования в этой области широко поддерживаются правительствами, поскольку ядерной энергии придется удовлетворять значительную часть энергетических потребностей человечества, когда иссякнут источники нефти и угля.
Наконец, упомянем о физике плазмы, одной из новых областей науки. Плазма - это раскаленный газ, состоящий из проводящих электричество ионов и электронов, но его поведение заметно отличается от поведения газа при обычных условиях. Если учесть, что все звезды и значительная часть межзвездного вещества - плазма, то получается, что во Вселенной в таком состоянии находится более 99% материи. Следовательно, для проникновения в тайны космоса необходимо как можно более полно исследовать свойства самой плазмы. Кроме того, для создания наиболее перспективных - термоядерных источников энергии, по-видимому, потребуется воспроизвести условия, царящие в недрах звезд.
До Второй мировой войны почти все значительные исследования в области физики выполнялись в университетских лабораториях, поддерживаемых университетскими фондами. После войны ситуация изменилась по трем причинам. Во-первых, создание новых экспериментальных установок стало для университетских бюджетов слишком дорогим делом, что привело к необходимости широкомасштабного участия государства в субсидировании научных программ. Во-вторых, правительства осознали необходимость поддержки научных исследований в собственных военных, экономических и политических целях. Это в особенности касается космических программ и исследований в области физики элементарных частиц, а также различных видов деятельности, связанных с решением энергетических проблем. В-третьих, коренным образом изменилось отношение деловых людей к науке: теперь большой бизнес во всем мире участвует в создании лабораторий, в которых проводятся серьезные исследования.
Все предпринимавшиеся ранее попытки предсказать будущее науки кончались провалом, однако очевидно, что мы можем ожидать большого прогресса в указанных выше направлениях. Ясно также, что в будущем появятся совершенно новые направления исследований, которые сейчас невозможно предвидеть, как невозможно было предсказать сто лет назад появление ядерной физики. Подлинно всеобъемлющая физическая теория позволит рассматривать с единой точки зрения процессы, протекающие во всех масштабах - от космического до субатомного. Ныне же, хотя нам известно многое, мы видим лишь интригующие фрагменты полной картины мира.
Основные разделы физики и дополнительную рубрикацию ее частей см.: АТОМА СТРОЕНИЕ; БИОФИЗИКА; ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ; ТЯГОТЕНИЕ; ТЕПЛОТА; МЕХАНИКА; АТОМНОГО ЯДРА СТРОЕНИЕ; ОПТИКА; УСКОРИТЕЛЬ ЧАСТИЦ; ДЕТЕКТОРЫ ЧАСТИЦ; ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ; КВАНТОВАЯ МЕХАНИКА; ОТНОСИТЕЛЬНОСТЬ; ФИЗИКА ТВЕРДОГО ТЕЛА; ЗВУК И АКУСТИКА; ТЕРМОДИНАМИКА.
Физика жидкостей         
Физика жидкости
Физика жидкостей (физика жидкого состояния вещества) — раздел физики, в котором изучаются механические и физические свойства жидкостей. Статистическая теория жидкостей является разделом статистической физики.
ЯДЕРНАЯ ФИЗИКА         
РАЗДЕЛ ФИЗИКИ, ИЗУЧАЮЩИЙ СТРУКТУРУ И СВОЙСТВА АТОМНЫХ ЯДЕР И ЯДЕРНЫЕ РЕАКЦИИ
Физика ядра; Физика атомного ядра; Физик-ядерщик; ТЯФ
раздел физики, охватывающий изучение структуры и свойств атомных ядер и их превращений - процессов радиактивного распада и ядерных реакций.
Ядерная физика         
РАЗДЕЛ ФИЗИКИ, ИЗУЧАЮЩИЙ СТРУКТУРУ И СВОЙСТВА АТОМНЫХ ЯДЕР И ЯДЕРНЫЕ РЕАКЦИИ
Физика ядра; Физика атомного ядра; Физик-ядерщик; ТЯФ
I Я́дерная фи́зика

раздел физики, посвященный изучению структуры атомного ядра, процессов радиоактивного распада и механизма ядерных реакций (См. Ядерные реакции). Придавая этому термину более общий смысл, к Я. ф. часто относят также физику элементарных частиц (См. Элементарные частицы). Иногда разделами Я. ф. продолжают считать направления исследований, ставшие самостоятельными ветвями техники, например ускорительную технику (см. Ускорители заряженных частиц), ядерную энергетику (См. Ядерная энергетика). Исторически Я. ф. возникла ещё до установления факта существования ядра атомного (См. Ядро атомное). Возраст Я. ф. можно исчислять со времени открытия радиоактивности (См. Радиоактивность).

Канонизированного деления современной Я. ф. на более узкие области и направления не существует. Обычно различают Я. ф. низких, промежуточных и высоких энергий. К Я. ф. низких энергий относят проблемы строения ядра, изучение радиоактивного распада ядер, а также исследования ядерных реакций, вызываемых частицами с энергией до 200 Мэв. Энергии от 200 Мэв до 1 Гэв называются промежуточными, а свыше 1 Гэв - высокими. Это разграничение в значительной мере условно (особенно деление на промежуточные и высокие энергии) и сложилось в соответствии с историей развития ускорительной техники. В современной Я. ф. структуру ядра исследуют с помощью частиц высоких энергий, а фундаментальные свойства элементарных частиц устанавливают в результате исследования радиоактивного распада ядер.

Обширной составной частью Я. ф. низких энергии является нейтронная физика, охватывающая исследования взаимодействия медленных нейтронов с веществом и ядерные реакции под действием нейтронов (см. Нейтронная спектроскопия). Молодой областью Я. ф. является изучение ядерных реакций под действием многозарядных ионов. Эти реакции используются как для поиска новых тяжёлых ядер (см. Трансурановые элементы), так и для изучения механизма взаимодействия сложных ядер друг с другом. Отдельное направление Я. ф. - изучение взаимодействия ядер с электронами и фотонами (см. Фотоядерные реакции). Все эти разделы Я. ф. тесно переплетаются друг с другом и связаны общими целями.

В Я. ф. (как и во всей современной физике) существует резкое разделение эксперимента и теории. Арсенал экспериментальных средств Я. ф. разнообразен и технически сложен. Его основу составляют ускорители заряженных частиц (от электронов до многозарядных ионов), ядерные реакторы (См. Ядерный реактор), служащие мощными источниками нейтронов, и Детекторы ядерных излучений, регистрирующие продукты ядерных реакций. Для современного ядерного эксперимента характерны большие интенсивности потоков ускоренных заряженных частиц или нейтронов, позволяющие исследовать редкие ядерные процессы и явления, и одновременная регистрация нескольких частиц, испускаемых в одном акте ядерного столкновения. Множество данных, получаемых в одном опыте, требует использования ЭВМ, сопрягаемых непосредственно с регистрирующей аппаратурой (см. Ядерная спектроскопия). Сложность и трудоёмкость эксперимента приводит к тому, что его выполнение часто оказывается посильным лишь большим коллективам специалистов.

Для теоретической Я. ф. характерна необходимость использования аппаратов разнообразных разделов теоретической физики: классической электродинамики (См. Электродинамика), теории сплошных сред, квантовой механики (См. Квантовая механика), статистической физики (См. Статистическая физика), квантовой теории поля (См. Квантовая теория поля). Центральная проблема теоретической Я. ф. - квантовая задача о движении многих тел, сильно взаимодействующих друг с другом. Теорией ядра и элементарных частиц были рождены и развиты новые направления теоретической физики (например, в теории сверхпроводимости (См. Сверхпроводимость), в теории химической реакции), получившие впоследствии применение в других областях физики и положившие начало новым математическим исследованиям (обратная задача теории рассеяния и её применения к решению нелинейных уравнений в частных производных) и др. Развитие теоретических и экспериментальных ядерных исследований взаимозависимо и тематически связано. Стоящие перед Я. ф. проблемы слишком сложны и лишь в немногих случаях могут быть решены чисто теоретическим или эмпирическим путём. Я. ф. оказала большое влияние на развитие ряда других областей физики (в частности, астрофизики и физики твёрдого тела) и других наук (химии, биологии, биофизики).

Прикладное значение Я. ф. в жизни современного общества огромно, её практические приложения фантастически разнообразны - от ядерного оружия (См. Ядерное оружие) и ядерной энергетики до диагностики и терапии в медицине (см. Радиология). Вместе с тем (и это является специфической особенностью Я. ф.) она остаётся той фундаментальной наукой, от прогресса которой можно ожидать выяснения глубоких свойств строения материи и открытия новых общих законов природы.

Лит. см. при ст. Ядро атомное.

И. С. Шапиро.

II Я́дерная фи́зика ("Я́дерная фи́зика",)

научный журнал Отделения ядерной физики АН СССР. Основан в 1965, издаётся в Москве. Выходит 2 тома в год по 6 выпусков в каждом. Публикует оригинальные статьи, рассчитанные на специалистов по физике атомного ядра, физике элементарных частиц, физике частиц высоких энергий, физике космических лучей. Тираж (1978) около 1000 экз. Переиздаётся в США на английском языке (с 1965).

Ядерная физика         
РАЗДЕЛ ФИЗИКИ, ИЗУЧАЮЩИЙ СТРУКТУРУ И СВОЙСТВА АТОМНЫХ ЯДЕР И ЯДЕРНЫЕ РЕАКЦИИ
Физика ядра; Физика атомного ядра; Физик-ядерщик; ТЯФ
Я́дерная фи́зика — раздел физики, изучающий структуру и свойства атомных ядер, а также их столкновения (ядерные реакции).
Ragdoll-физика         
  • Ранний пример использования физики ''Ragdoll'', [[1997 год]].
  • Шариковое соединение
  • Шарнирное (петельное) соединение
  • Демонстрация физики Ragdoll
  • Tokamak]]. Этот Ragdoll сконструирован с использованием комбинации шарнирных и шариковых сочленений (соединений) с ограничениями движения данных соединений. В этой демонстрации несколько Ragdoll-моделей катятся вниз по ступенькам.
Ragdoll; Физика Ragdoll
Физика Ragdoll (рэгдо́лл) — вид процедурной анимации, пришедший на замену статичной, пререндерной анимации. Название произошло от английского словосочетания rag doll (rag — тряпка, doll — кукла), в силу чего на русском языке этот вид анимации часто называют «тряпичной куклой».
Немецкая физика         
  • Йоханнес Штарк]]}}
Арийские физики; Еврейская физика; Deutsche Physik; Арийская физика
«Немецкая физика» («арийская физика»; ) — националистическое движение в среде немецких физиков начала 1930-х годов, возникшее в результате непонимания и неприятия новых физических теорий, ныне известных как теория относительности и квантовая механика, то есть прежде всего работ Альберта Эйнштейна, на которые был навешен ярлык «еврейская физика» ().
КОНДЕНСИРОВАННОЕ СОСТОЯНИЕ         
  • рубидия]]. Синие и белые области соответствуют более высокой плотности.
  • Компьютерное моделирование ''наношестерёнок'' из молекул [[фуллерен]]ов. Существует надежда, что достижения в области нанотехнологий приведут к созданию машин, работающих на молекулярном уровне.
  • гелия]] в Лейдене в 1908 году
  • белка]].
  • год=2011}}</ref>.
  • Рис. 14}}.
  • лабораториях Bell]]
Физика сплошных сред; Физика конденсированных сред; Конденсированное состояние
вещества , жидкое и твердое агрегатные состояния вещества. Переход вещества из газообразного в конденсированное состояние называется конденсацией.
Физика конденсированного состояния         
  • рубидия]]. Синие и белые области соответствуют более высокой плотности.
  • Компьютерное моделирование ''наношестерёнок'' из молекул [[фуллерен]]ов. Существует надежда, что достижения в области нанотехнологий приведут к созданию машин, работающих на молекулярном уровне.
  • гелия]] в Лейдене в 1908 году
  • белка]].
  • год=2011}}</ref>.
  • Рис. 14}}.
  • лабораториях Bell]]
Физика сплошных сред; Физика конденсированных сред; Конденсированное состояние
Фи́зика конденси́рованного состоя́ния (от ) — область физики, которая занимается исследованиями макроскопических и микроскопических свойств вещества (материи). В частности, это касается «конденсированных» фаз, которые появляются всякий раз, когда число составляющих вещество компонентов (атомов, молекул, квазичастиц) в системе чрезвычайно велико и взаимодействия между компонентами сильны.
Конденсированное состояние         
  • рубидия]]. Синие и белые области соответствуют более высокой плотности.
  • Компьютерное моделирование ''наношестерёнок'' из молекул [[фуллерен]]ов. Существует надежда, что достижения в области нанотехнологий приведут к созданию машин, работающих на молекулярном уровне.
  • гелия]] в Лейдене в 1908 году
  • белка]].
  • год=2011}}</ref>.
  • Рис. 14}}.
  • лабораториях Bell]]
Физика сплошных сред; Физика конденсированных сред; Конденсированное состояние

вещества, твёрдое и жидкое состояния вещества. В отличие от газообразного состояния, у вещества в конденсированном состоянии существует упорядоченность в расположении частиц (ионов, атомов, молекул). Кристаллические твёрдые тела обладают высокой степенью упорядоченности - дальним порядком в расположении частиц. Частицы жидкостей и аморфных твёрдых тел располагаются более хаотично, для них характерен ближний порядок (см. Дальний порядок и ближний порядок). Свойства веществ в конденсированном состоянии определяются их структурой и взаимодействием частиц (см. Межмолекулярное взаимодействие, Жидкость, Твёрдое тело).

Википедия

Анизотропия

Анизотропи́я (от др.-греч. ἄνισος — неравный и τρόπος — направление) — различие свойств среды (например, физических: упругости, электропроводности, теплопроводности, показателя преломления, скорости звука или света и др.) в различных направлениях внутри этой среды; в противоположность изотропии.

В отношении одних свойств среда может быть изотропна, а в отношении других — анизотропна; степень анизотропии также может различаться.

Частный случай анизотропии — ортотропия (от др.-греч. ὀρθός — прямой и τρόπος — направление) — неодинаковость свойств среды по взаимно перпендикулярным направлениям.

Что такое ФИЗИКА: СОВРЕМЕННАЯ ФИЗИКА - определение