ФУНКЦИЙ ТЕОРИЯ: ПРИЛОЖЕНИЯ - определение. Что такое ФУНКЦИЙ ТЕОРИЯ: ПРИЛОЖЕНИЯ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ФУНКЦИЙ ТЕОРИЯ: ПРИЛОЖЕНИЯ - определение

СТРАНИЦА ЗНАЧЕНИЙ
Функций теория
Найдено результатов: 1078
ФУНКЦИЙ ТЕОРИЯ: ПРИЛОЖЕНИЯ      
К статье ФУНКЦИЙ ТЕОРИЯ
В естественных науках. Аналитические функции широко используются в некоторых областях науки и техники просто потому, что дают в руки исследователя удобный математический аппарат. Ч.Штейнметц (1865-1923) был первым, кто привлек внимание инженеров-электриков к тем практическим преимуществам, которые дают комплексные функции при рассмотрении проблем, связанных с переменным током. Аналогично, для упрощения процедуры решения линейных дифференциальных уравнений, возникающих в электротехнике и механике, О.Хевисайд (1850-1925) ввел формальное операционное исчисление, которое ныне вытеснено преобразованиями Лапласа и Фурье, представляющих частные случаи интегрального представления Коши из теории аналитических функций. В связи с этим при вычислении несобственных действительных интегралов, часто возникающих в практических проблемах, широко используется теория вычетов Коши.
Более основательный вклад был внесен теорией аналитических функций в гидродинамику и теорию теплопроводности. Первая точка соприкосновения - связь с понятием гармонической функции. Если функция F аналитична в области D и F(z) = u + iv, то дифференцируя уравнения Коши - Римана (7), нетрудно убедиться в том, что u и v - решения дифференциального уравнения Лапласа в частных производных
Любое решение уравнения (13) в области D называется функцией, гармонической в D. Таким образом, действительная (или мнимая) часть любой аналитической функции - функция, гармоническая всюду. Наоборот, если H - любая функция, гармоническая в односвязной области D, то она является действительной частью некоторой комплексной функции F, аналитичной в D.
Дифференциальное уравнение типа (13) возникает во многих задачах в различных областях науки и техники. Оно является математической формулировкой закона о распределении температуры в неравномерно нагретом теле. Левая часть этого уравнения входит в так называемое волновое уравнение, играющее фундаментальную роль в теории колебаний. Неудивительно, что прикладные математики широко используют методы теории функций комплексного переменного для решения своих задач.
В гидродинамике теория функций комплексного переменного используется для решения задач, связанных со установившимся плоско-параллельным течением несжимаемой безвихревой жидкости. Вектор скорости такой жидкости в точке (x, y) можно записать в виде a(x,y) + ib(x,y); в силу природы течения существует гармоническая функция u, такая, что
Функция u называется потенциалом скоростей течения. Соответствующая аналитическая функция F называется комплексным потенциалом скоростей, ее действительная часть совпадает с u. Пользуясь конформными отображениями, такую функцию можно использовать для описания линий тока при обтекании сложного профиля, погруженного в движущуюся жидкость. В аэродинамике изучение обтекания привело к открытию закона образования подъемной силы крыла самолета.
В чистой математике. Математика - не коллекция изолированных друг от друга областей. Известные доказательства возможности разложения на n множителей любого многочлена P(x) = c0 + c1x + ... + cnxn основано на использовании основных идей из теории функций, в частности теоремы Лиувилля или принципа аргумента (Гаусс, 1799). Доказательство теоремы о простых числах и ее уточнения, касающиеся частоты, с которой простые числа 2, 3, 5, 7, 11, ... встречаются среди целых чисел, основана на аналитической структуре некоторых комплексных функций, введенных Риманом, Дирихле и Ж.Адамаром (1865-1963). Необходимость уточнения некоторых интуитивно очевидных свойств плоских кривых на основе интегральной теоремы Коши, привело к появлению таких топологических понятий, как гомология и гомотопия (А.Пуанкаре, 1854-1912). Позднее изучение взаимосвязи между гармоническими функциями и аналитическими функциями, определенными на многосвязных множествах, привели к созданию понятия накрывающей поверхности и к более ясному пониманию понятия римановой поверхности, первоначально введенном (в 1851) для облегчения построения теории многозначных функций. В свою очередь это послужило стимулом к разработке таких идей в теории комплексных многообразий и общей теории пучков.
Теория приближений         
Аппроксимация функций; Теория аппроксимации
Теория приближений — раздел математики, изучающий вопрос о возможности приближённого представления одних математических объектов другими, как правило более простой природы, а также вопросы об оценках вносимой при этом погрешности. Значительная часть теории приближения относится к приближению одних функций другими, однако есть и результаты, относящиеся к абстрактным векторным или топологическим пространствам.
ФУНКЦИЙ ТЕОРИЯ         
раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что обычно их рассматривают порознь. Не вдаваясь в детали, можно сказать, что по существу речь идет о различии, с одной стороны, в детальном изучении основных понятий математического анализа (таких, как непрерывность, дифференцирование, интегрирование и т.п.), а с другой стороны, в теоретическом развитии анализа конкретных функций, представимых степенными рядами. Одним из достижений теории функций действительного переменного стало создание хорошей теории интегрирования, которую мы рассмотрим ниже. См. также АНАЛИЗ В МАТЕМАТИКЕ
; МАТЕМАТИЧЕСКИЙ АНАЛИЗ
; ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
; ФУНКЦИЯ
; ЧИСЛО
; РЯДЫ
; МНОЖЕСТВ ТЕОРИЯ
; ТОПОЛОГИЯ
.
См. также:
Функций теория         

раздел математики, в котором изучаются общие свойства функций (См. Функции). Ф. т. распадается на две части: теория функций действительного переменного и теория функций комплексного переменного.

В "классическом" математическом анализе основным объектом изучения являются непрерывные функции (См. Непрерывная функция), заданные на (конечных или бесконечных) интервалах и обладающие более или менее высокой степенью гладкости. Однако уже со 2-й половины 19 в. развитие математики всё настоятельнее стало требовать систематического изучения функций более общего типа. Основной причиной этого является то, что Предел последовательности непрерывных функций может быть разрывен. Иными словами, класс непрерывных функций оказывается незамкнутым относительно важнейшей операции анализа - предельного перехода. В связи с этим функции, определяемые при помощи таких классических средств, как тригонометрические ряды, часто оказываются разрывными или недифференцируемыми. По той же причине могут быть разрывны производные непрерывных функций и т.п. Наконец, дифференциальные уравнения, возникающие при рассмотрении физических задач, иногда не имеют решений в классе достаточно гладких функций, но имеют их в более широких классах функций (если надлежащим образом сообщить само понятие решения). Весьма важно, что именно эти обобщённые решения (см. Обобщённые функции) и дают ответ на исходную физическую задачу. Эти и аналогичные им обстоятельства стимулировали создание Ф. т. действительного переменного.

Отдельные частные факты Ф. т. действительного переменного были открыты ещё в 19 в. (существование рядов непрерывных функций с разрывной суммой, примеры нигде не дифференцируемых непрерывных функций, не интегрируемых функций и т.п.). Однако эти факты воспринимались обычно как "исключения из правил" и не объединялись никакими общими схемами. Лишь в начале 20 в., когда в основу изучения функций были положены методы множеств теории (См. Множеств теория), стала развиваться систематически современная Ф. т. действительного переменного.

Можно различить три направления в Ф. т. действительного переменного.

1) Метрическая Ф. т., где свойства функций изучаются при помощи меры (см. Мера множества) тех множеств, на которых эти свойства имеют место. В метрической Ф. т. с общих точек зрения изучаются интегрирование и дифференцирование функций (см. Интеграл, Дифференциал, Производная), различными способами обобщается понятие сходимости (См. Сходимость) функциональных последовательностей, исследуется строение разрывных функций весьма широкого типа и т.п. Важнейшим классом функций, изучаемым в метрической Ф. т., являются Измеримые функции.

2) Дескриптивная Ф. т., в которой основным объектом изучения является операция предельного перехода (см. Бэра классификация).

3) Конструктивная Ф. т., изучающая вопросы изображения произвольных функций при помощи надлежащих аналитических средств (см. Приближение и интерполирование функций).

О Ф. т. комплексного переменного см. Аналитические функции.

Лит.: Александров П. С., Введение в общую теорию множеств и функций, М. - Л., 1948; Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 4 изд., М., 1976.

ЭЛЛИПТИЧЕСКИЕ ФУНКЦИИ         
Теория эллиптических функций; Эллиптические функции
функции, связанные с интегралами, содержащими квадратные корни из многочленов 3-й или 4-й степеней (появляются, напр., при вычислении длины дуги эллипса).
Эллиптическая функция         
Теория эллиптических функций; Эллиптические функции
Эллиптическая функция — в комплексном анализе периодическая в двух направлениях функция, заданная на комплексной плоскости. Эллиптические функции можно рассматривать как аналоги тригонометрических (имеющих только один период).
Эллиптические функции         
Теория эллиптических функций; Эллиптические функции

функции, связанные с обращением эллиптических интегралов (См. Эллиптические интегралы). Э. ф. применяются во многих разделах математики и механики как при теоретических исследованиях, так и для численных расчётов.

Подобно тому как тригонометрическая функция u = sinx является обратной по отношению к интегралу

так обращение нормальных эллиптических интегралов 1-го рода

где z = sin φω, k - модуль эллиптического интеграла, порождает функции: φ = am z - амплитуда z (эта функция не является Э. ф.) и ω = sn z = sin (am z) - синус амплитуды. Функции cn - косинус амплитуды и dn z - дельта амплитуды определяются формулами

Функции sn z, cn z, dn z называют Э. ф. Якоби. Они связаны соотношением

sn2z + cn2z = k2sn2z + dn2z = 1.

На рис. представлен вид графиков Э. ф. Якоби. Они связаны соотношением

sn2z + cn2z = k2sn2z + dn2z = 1

На рис. представлен вид графиков Э. ф. Якоби для действительного x и 0 < k < 1; а

- полный нормальный эллиптический интеграл 1-го рода и 4K - основной период Э. ф. sn z. В отличие от однопериодической функции sin х, функция sn z - двоякопериодическая. Её второй основной период равен 2iK, где

и - дополнительный модуль. Периоды, нули и полюсы Э. ф. Якоби приведены в таблице, где m и n - любые целые числа.

------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Функции | Периоды | Нули | Полюсы |

|----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| sn z | 4Km + 2iK'n | 2mK + 2iK'n | |

|-----------------------------------------------------------------------------------------------------------------------| }2mK + (2n + 1) iK' |

| cn z | 4K + (2K + 2iK') n | (2m + 1) K + 2iK'n | |

|-----------------------------------------------------------------------------------------------------------------------| |

| dn z | 2Km + 4iK'n | (2m + 1) K + (2n + 1) iK | |

------------------------------------------------------------------------------------------------------------------------------------------------------------------

Э. ф. Вейерштрасса ℙ(х) может быть определена как обратная нормальному эллиптическому интегралу Вейерштрасса 1-го рода

где параметры g2 и g2 - называются инвариантами ℙ(x). При этом предполагается, что нули e1, e2 и e3 многочлена 4t3 - g2t - g3 различны между собой (в противном случае интеграл (*) выражался бы через элементарные функции). Э. ф. Вейерштрасса ℙ(х) связана с Э. ф. Якоби следующими соотношениями:

,

,

.

Любая мероморфная двоякопериодическая функция f (z) с периодами ω1 и ω2, отношение которых мнимо, т. е. f (z + mω1 + пω2) = f (z) при m, n = 0, ±1, ±2,... и , является Э. ф. Для построения Э. ф., а также численных расчётов применяют Сигма-функции и Тэта-функции.

Изучению Э. ф. предшествовало накопление знаний об эллиптических интегралах, систематическое изложение теории которых дал А. Лежандр. Основоположниками теории Э. ф. являются Н. Абель (1827) и К. Якоби (1829). Последний дал развёрнутое изложение теории Э. ф., названное его именем. В 1847 Ж. Лиувилль опубликовал изложение основ общей теории Э. ф., рассматриваемых как мероморфные двоякопериодические функции. Представление Э. ф. через ℙ-функцию, а также ζ-, σ-функции дано К. Вейерштрассом в 40-х гг. 19 в. (две последние не являются Э. ф.).

Лит.: Маркушевич А. И., Теория аналитических функций, 2 изд., т. 2, М., 1968; Гурвиц А., Курант Р., Теория функций, пер. с нем., М., 1968; Уиттекер Э, Т., Ватсон Дж. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963; Бейтмен Г., Эрдейи А., Высшие трансцендентные функции. Эллиптические и автоморфные функции. Функции Ламе и Матье, пер. с англ., М., 1967.

Рис. к ст. Эллиптические функции.

Сложная функция         
ПРИМЕНЕНИЕ ОДНОЙ ФУНКЦИИ К РЕЗУЛЬТАТУ ДРУГОЙ
Суперпозиция функций; Сложная функция; Композиция отображений

функция от функции. Если величина y является функцией от u, то есть у = f (u), а и, в свою очередь, функцией от х, то есть u = φ(х), то у является С. ф. от х, то есть y = f [(x)], определённой для тех значений х, для которых значения φ(х) входят в множество определения функции f (u). В таком случае говорят, что у является С. ф. независимого аргумента х, а u - промежуточным аргументом. Например, если у = u2, u = sinx, то у = sin2х для всех значений х. Если же, например, у = , u = sinx, то у = , причём, если ограничиваться действительными значениями функции, С. ф. у как функция х определена только для таких значений х, для которых sin ≥ 0, то есть для , где k = 0, ± 1, ± 2,...

Производная С. ф. равна произведению производной данной функции по промежуточному аргументу на производную промежуточного аргумента по независимому аргументу. Это правило (цепное правило) распространяется на С. ф. с двумя, тремя и т. д. промежуточными аргументами: если у = f (u1), u1 = φ(u2),..., uk-1 = φk-1(uk), uk = φk (x), то

СЛОЖНАЯ ФУНКЦИЯ         
ПРИМЕНЕНИЕ ОДНОЙ ФУНКЦИИ К РЕЗУЛЬТАТУ ДРУГОЙ
Суперпозиция функций; Сложная функция; Композиция отображений
функция от функции. Если величина y является функцией от u, то есть y = f(u), а u, в свою очередь, функцией от x, то есть u = ?(x), то y = F(x) является сложной функцией от x, то есть y = F(x) = f[?(x)].
Преобразования графиков функций         
  • Влияние коэффициентов <math>a</math>, <math>b</math> и <math>c</math> на параболу
Преобразование графиков функций; Смещение (геометрия)
[Элементарные] преобразования графиков функций — термин, используемый в школьной программе для обозначения линейных преобразований функции или её аргумента вида y=\alpha f(\gamma x+\delta)+\beta. Применяется также для обозначений операций с использованием модуля.

Википедия

Теория функций

Теория функций:

  • Теория функций вещественного переменного
  • Теория функций комплексного переменного
  • Теория аналитических функций
  • Теория функций в гармонии (музыковедческой дисциплине) — учение о специфических значениях аккордов в классико-романтической тональности.
Что такое ФУНКЦИЙ ТЕОРИЯ: ПРИЛОЖЕНИЯ - определение